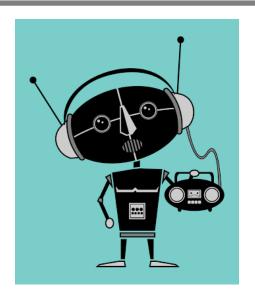
Welcome to

Computer Audition

(ECE 277/477, AME 277, CSC 264/464, TEE 477)

Zhiyao Duan

Associate Professor of ECE and CS
University of Rochester


Human Audition

- Understanding the environment
- Communication
- Entertainment

Computer Audition

- Understanding the environment
- Communication
- Entertainment entertain human

Some Key Problems

Sound source identification

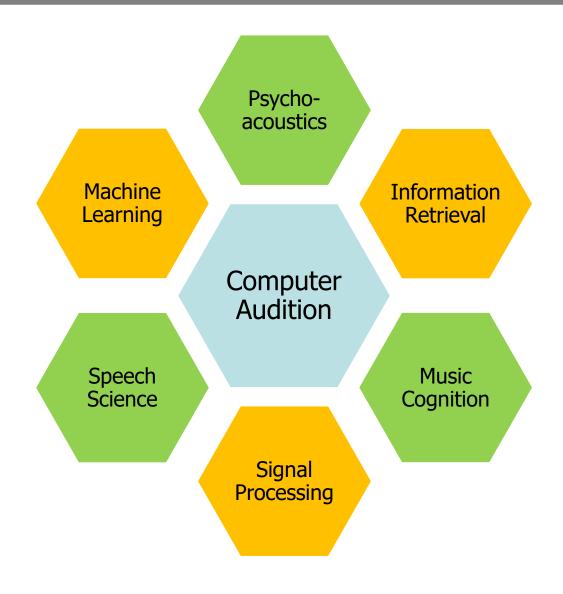
Source localization

- Content understanding
 - Speech, event, melody, rhythm

Tools for Sound Interaction

Create: Bone Flutes (7000 B.C.)

Modify: Delphi Theater (300 B.C.)

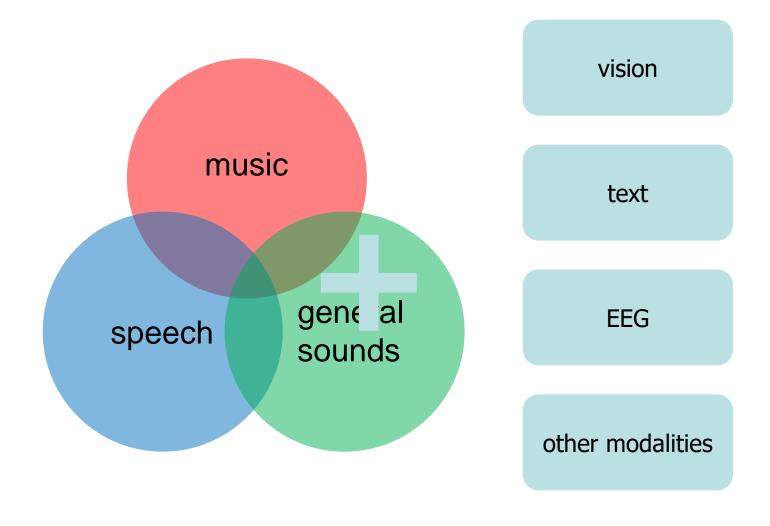


Record: Cylinder Phonograph (1899)

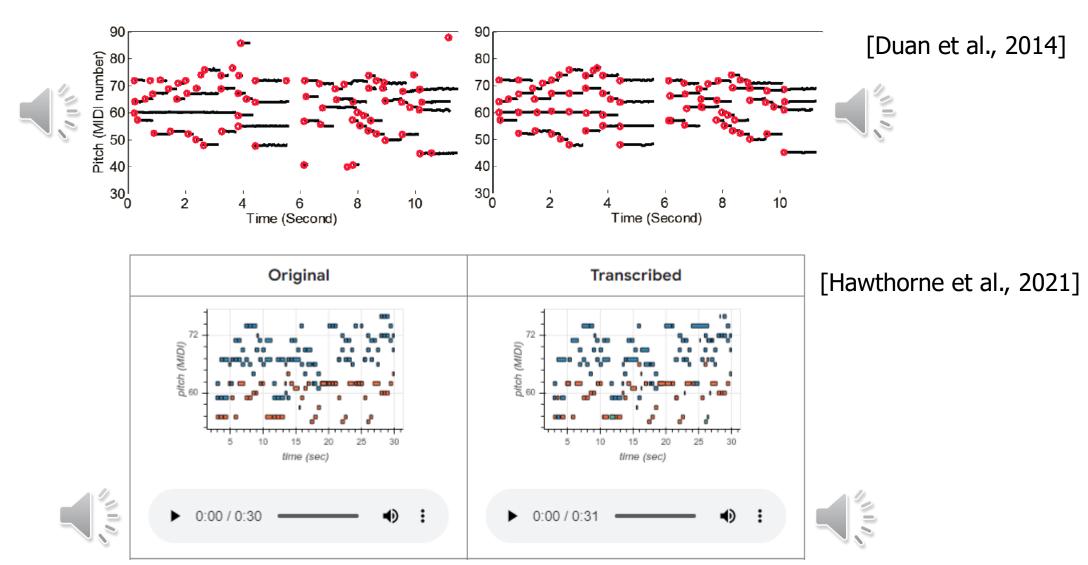
5

Impact on Many Fields

Many Applications



Research Areas

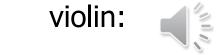

Automatic Music Transcription

[Kong et al., 2020]

GiantMIDI-Piano: A MIDI dataset for classical piano music compositions

ByteDance Al Lab

- Transcribed piano solo MIDI files.
- 2,784 composers
- 10,848 compositions
- 1,237 hours


https://magenta.tensorflow.org/transcription-with-transformers

ECE 477 - Computer Audition, Zhiyao Duan 2023

- Pop music separation [Takahashi et al., 2018]
 - https://sisec18.unmix.app/#/unmix/AM%20Contra%20-%20Heart%20Peripheral/TAU1
- Violin/piano separation [Li, 2019]

Mixture:

- Speech separation [Hershey et al., 2016]

− Mixture: female #1:

female #2:

- More demos about speech separation
 - https://cslikai.cn/project/Pure-Audio/

- Automatic Music Accompaniment
 - Music Plus One

[Raphael, 2001]

https://music.informatics.indiana.edu/~craphael/music_plus_one/movies/movies.html

- Symbolic music generation
 - Music harmonization [Yan, 2018]

- Generation from scratch
 - String trio:

- Music audio generation
 - OpenAI's Jukebox: generating songs given lyrics, genre and artist
 - https://openai.com/research/jukebox

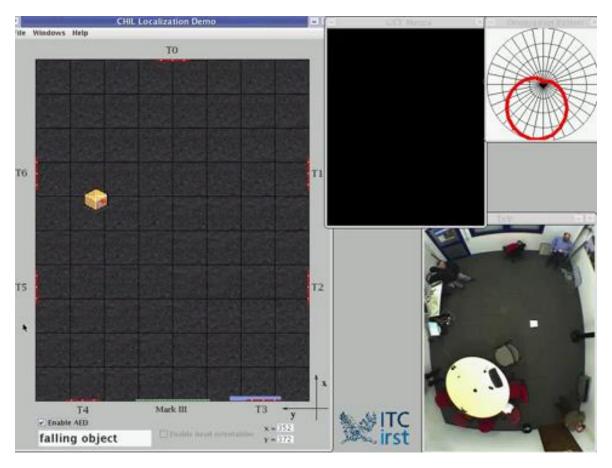
- Google's MusicLM: generating music from text
 - https://google-research.github.io/seanet/musiclm/examples/

- Text-to-Speech
 - IBM Watson
 - https://www.ibm.com/demos/live/tts-demo/self-service/home

- Voice conversion
 - ControlVC: [Chen & Duan, 2023]
 - https://melissachen15.notion.site/melissachen15/ControlVC-Audio-Demodd0ea58c5b7f434a81af9cbcd67f56f6

Voice editing

VoCo: Text-based Insertion and Replacement in Audio Narration


Zeyu Jin*, Gautham J. Mysore[†], Stephen DiVerdi[†], Jingwan Lu[†] and Adam Finkelstein*

* Princeton University [†] Adobe Research

SIGGRAPH 2017

https://www.youtube.com/watch?v=RB7upq8nzIU

Acoustic event detection and localization

https://www.youtube.com/watch?v=iImkV6oKG_8

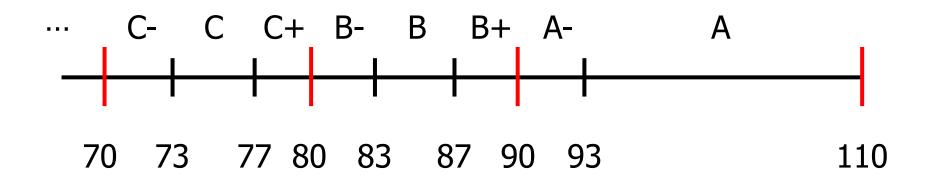
- Audio-visual speech separation [Afouras, 2018]
 - http://www.robots.ox.ac.uk/~vgg/demo/theconversation/demos/vox/0/demo.html
- Speech-driven talking face generation [Eskimez et al., 2020]

Course Topics

- Fundamentals of human audition
- Auditory models
- Audio features (pitch, timbre, ect.)
- Audio modeling techniques
- State-of-the-art research topics
 - Polyphonic pitch analysis
 - Source separation
 - Sound identification

—

Course Objectives


- General understanding of the field
- Deep understanding and hands-on research experience in a sub-field

- Gain experience of the full cycle of research
- Able to think critically
- Improve presentation and writing skills

Assignments

- Total (110 points)
 - Homework (60 points)
 - HW1-HW4: Python/Matlab programming
 - HW5-HW6: Python programming for deep learning
 - Class paper review (20 points)
 - Course project (30 points)
 - Proposal (5 points)
 - Status update (5 points)
 - Peer review (5 points)
 - Final report (5 points)
 - Presentation/demo (10 points)
- No exams

Grading

- No curve
- 200-level students get 10 points boost

Important Policies

- Late homework penalty
 - 20% deduction of full grade each day
- Do your own work
 - Discussions are encouraged
 - No exchange of code
 - No copying of five or more consecutive words
 - Cite external sources
 - AI tools (e.g., ChatGPT) can only be used to polish text but not to generate content
- Attendance is not taken, but class discussions are very important for learning

Prerequisites

- Signal Processing
 - ECE 246/446 or ECE 272/472 or equivalent
- Python or Matlab programming

- Preferred but not required
 - Machine learning such as SVM, Markov models, neural networks, clustering, etc.

Two Websites

- Course website
 - All materials (lecture notes, readings, assignments, etc.)
 - http://www.ece.rochester.edu/~zduan/teaching/ece477
- Blackboard:
 - For announcements, homework submissions, and Q&A