Topic 11

Score-Informed Source Separation (chroma slides adapted from Meinard Mueller)

Why Score-informed Source Separation?

- Audio source separation is useful
 - Music transcription, remixing, search
- Non-satisfying results if only using audio
- Score provides some info that one can use
 - E.g., conductor, learn to sing in a choir
- Lots of scores are out there

Musical Score in MIDI

ECE 477 - Computer Audition, Zhiyao Duan 2023

Would it be trivial?

• Is map-informed tourism trivial (for machine)?

Remaining Tasks

 Score tells us what musical objects to look for, but not where to look nor what they sound like.

- Problems
 - How to align audio with score?
 - How to represent them?
 - How to separate the signal?

Audio/Score representations for alignment

- Represent in the same way
 - Spectrum
 - Only good for monophonic music
 - Chroma feature
 - Good for polyphonic music
 - Pitch info
 - Ideal for both monophonic and polyphonic music
 - Relies on good multi-pitch estimation techniques

Chroma Feature

- Spectral energy of the 12 pitch classes
 - 12-d vector

Spectrogram

Log-frequency Spectrogram

Chromagram

Normalized Chromagram

Chromagram of Polyphonic Music

Dynamic Time Warping

Possible Progression

• Three ways for a path to get to (n,m) in one step

A Nice Property

- Let *d*(*i*, *j*) be the distance matrix
- Let C(n,m) be the lowest cost from (1,1) to (n,m)
 - Then C(1,1) = d(1,1)

$$C(n,m) = \min \begin{cases} C(n-1,m) + d(n,m) \\ C(n-1,m-1) + d(n,m) \\ C(n,m-1) + d(n,m) \end{cases}$$

ECE 477 - Computer Audition, Zhiyao Duan 2023

Dynamic Programming!

- Calculate the lowest cost matrix C(i, j)
 - Starting from C(1,1)
 - Then calculate C(1,2), C(2,1)
 - Then C(1,3), C(2,2), C(3,1)
 -
 - Finally, calculate C(n,m)
- Remember how you calculated, and trace back to get the path

Two SISS Systems for Polyphonic Music

- Score-informed NMF
 - Chroma feature to represent audio
 - Dynamic time warping for alignment
 - NMF-based separation
 - Offline
- Soundprism
 - Multi-pitch info of audio
 - Particle filtering for alignment
 - Pitch-based separation
 - Online

[Ewert et al., 2009] [Ewert & Muller, 2012]

[Duan & Pardo, 2011]

Score-informed NMF

When score info is not used

When dictionary is initialized by score notes

10

When activation is initialized by score notes

When both W and H are initialized

ECE 477 - Computer Audition, Zhiyao Duan 2023

Also Considering Onset Models

ECE 477 - Computer Audition, Zhiyao Duan 2023

Experiments

- MIDI-synthesized piano music with randomly imposed alignment errors
 - Audio has accurate pitch, simple timbre
- Separate left/right hand notes

ECE 477 - Computer Audition, Zhiyao Duan 2023

Discussions

• Pros

- "smart initialization" of W and H
- Detailed timbre model using NMF
- Onset modeling
- Cons
 - May be hard to deal with multi-instrument polyphonic audio
 - The same note can have different pitch and timbre
 - How many dictionary elements do we need then?

Soundprism

• Multi-pitch info of audio

[Duan & Pardo, 2011]

• Particle filtering for alignment

• Pitch-based separation

• Online

Align Audio with Score

ECE 477 - Computer Audition, Zhiyao Duan 2023

A State Space Model

Transition Model

• Dynamical system

- Position:
$$x_n = x_{n-1} + l \cdot v_{n-1}$$
If the score position x_n - Tempo: $v_n = \{ \begin{array}{c} v_{n-1} + n_v \\ v_{n-1} \end{array} \right)$ If the score position x_n where $n_v \sim \mathcal{N}(0, \sigma_v^2)$ otherwise

Observation Model

• $p(y_n | \theta_n)$ is the multi-pitch estimation model trained from thousands of random chords

Online Inference by Particle Filtering

- In *n*-th frame, estimate posterior $p(s_n|Y_{1:n})$ from past observations $Y_{1:n} = (y_1, ..., y_n)$
- Update $p(s_n|Y_{1:n})$ from $p(s_{n-1}|Y_{1:n-1})$ with a fixed number of particles
 - Move by $p(s_n | s_{n-1})$ (i.e., the dynamic equations), resample by $p(y_n | s_n)$

ECE 477 - Computer Audition, Zhiyao Duan 2023

Source Separation

• 1. Accurately estimate performed pitches $\hat{\theta}_n$

– Around score pitches θ_n

$$\hat{\theta}_n = \arg\max p(\mathbf{y}_n \mid \theta)$$

s.t. $\theta \in [\theta_n - 50 \text{cents}, \theta_n + 50 \text{cents}]$ θ_n

Reconstruct Source Signals

- 2. Allocate mixture's spectral energy
 - Non-harmonic bins
 - To all sources, evenly
 - Non-overlapping harmonic bins
 - To the active source, solely
 - Overlapping harmonic bins
 - To active sources, in inverse proportion to the square of harmonic numbers

 0
 1
 0
 1
 0
 1
 0
 1

 0
 0
 1
 0
 1
 0
 1
 0
 1

Harmonic positions for Source 2

 3. IFFT with mixture's phase to go back to time domain ECE 477 - Computer Audition, Zhiyao Duan 2023

Experiments

- 10 pieces of J.S. Bach 4-part chorales
- Audio played by violin, clarinet, saxophone and bassoon, separately recorded and then mixed.
- MIDI score downloaded
- Ground-truth alignment manually annotated
- 150 combinations = 40 solos + 60 duets + 40 trios + 10 quartets

Source Separation Results

Soundprism

J. Brahms, Clarinet Quintet in B minor, op.115. 3rd movement

ECE 477 - Computer Audition, Zhiyao Duan 2023

Interactive Music Editing

Discussions

- Advantages
 - Online system, potential for real-time applications
 - Can deal with multi-instrument polyphonic audio
 - Multi-pitch info is used
- Disadvantages
 - Multi-pitch model cannot distinguish different parts of a note
 - No onset modeling, alignment not precise
 - No timbre modeling in separation