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ABSTRACT

Human beings have a very sophisticated sense of hear-
ing. While the physiological aspects of the auditory sys-
tems are well established, the perceptual and cognitive as-
pects are still not well understood. One active field of re-
search in computer audition is automatic melody extrac-
tion from audio. The applications range from query-by-
humming to genre classification and cover detection. On
the cognitive side, the research in melody perception has
not been very active in the past 15 years, the main reason
being an intrinsic difficulty in designing and conducting
experiments. To understand how humans perceive melodies
we have to understand the mechanism for pitch perception,
stream segregation and melody perception. Only the first
two tasks have been researched extensively while most re-
searches on melodies have been relegated to simple unac-
companied melodies.

In this paper I describe the state-of-the-art of melody
perception and extraction from both a cognitive and a com-
putational points of view. Some of the proposed algorithms
for melody extraction model the human hearing to a certain
degree and exploit perceptual cues to improve accuracy,
while other use signal processing and machine learning
techniques with little or no regard to physiological or cog-
nitive models. Proposed algorithms have achieved good
results in some circumstances but they are far from being
perfect. From our analysis it appears that perceptually mo-
tivated algorithms can improve the accuracy but future re-
search in signal processing might find alternative ways to
solve the problem.

1. INTRODUCTION

The field of music perception and its subfield of melody
perception are relatively young areas of research, espe-
cially in comparison to related research fields like vision,
memory or even speech recognition. While the human au-
ditory system has been been extensively studied, we can
only understand a small part of it, namely from the outer
ear to the auditory nerve [23].
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The brain mechanisms for melodic processing are still
not very well understood [31]. Established and novel non-
invasive diagnostic techniques, like functional magnetic res-
onance imaging (fMRI), even-related potential (ERP), elec-
troencephalography (EEG), and positron emission tomog-
raphy (PET), can be used to observe and analyze how the
human brain reacts to musical stimuli. Unfortunately there
are two main challenges to understanding how music is
perceived and processed in the human brain: the first prob-
lem is the overwhelming complexity of the human brain,
the second is the complexity of music itself. Typical ex-
periments in psychoacoustics are conducted with simple
signals, like sequences of pure sinusoidal tones. The ratio-
nale for this is for the experimenters to be able to precisely
control each variable involved in the experiment, i.e., pitch,
loudness, rhythm and tempo, independently from other vari-
ables [14]. These very crude experiments can only shed
some light on how real music is perceived, though. The
perception of melody in a complex texture, like in a song
or in an orchestral passage, is an almost entirely uncharted
territory. This is also reflected in automatic methods for
pitch recognition. The detection of pitches from a single
source is a solved problem but multi-pitch detection and
streaming are still open problems. [8] One major challenge
for future research is thus how to construct ecologically
valid experiments, that is using real music as stimuli for
experiment rather than dull laboratory music, while retain-
ing a good control on the involved variables [14].

This paper is divided in two major sections: section 2
will describe the current understanding on how humans
perceive melodies and what perceptual cues can be involved
in the process; section 3 will describe different melody
extraction algorithms showing different approaches to the
problem.

2. MELODY PERCEPTION

According to the Oxford Dictionary of Music, a melody
is “a succession of notes, varying in pitch, which have an
organized and recognizable shape.” [15] Other definitions
include a positive connotation, like being pleasant or mu-
sically satisfying for the listener. Cook provides a more
precise definition on how the shape of a melody is recog-
nizable: a melody maintains its identity over certain mu-
sical transformations, like starting pitch, tempo, timbre,
loudness and rhythm [5]. As in vision, transformations of
a shape can be tricky: a chair is still a chair even if the



Figure 1. Pictorial representation of activity along the
basilar membrane [10]

legs are shortened or lengthened slightly; but if the legs are
lengthened too much a chair might become a stool. The
same happens with melodies, especially with tempo and
rhythm transformations.

The problem of melody perception in humans is twofold:
the first aspect is the perception of melody in itself, the sec-
ond aspect is melody perception in an ensemble, e.g. the
melody of a song. The second problem is essentially a
segregation problem with the additional constraint of iden-
tifying the most important part [2, 24].

A popular hypothesis among researchers is that melody
perception, similarly to vision, is governed by a few Ge-
stalt principles, like the law of proximity and the law of
continuity [2, 14]. One important open question though
is “how does the brain recognize musical Gestalts?” [18]
Also, Gestalt principles do not explain other important per-
ceptual features like tonality and expectation [7, 14, 29].
One interesting problem is whether the tonal hierarchy and
thus musical expectation is innate or learned. At this time
the research is inconclusive. Some experiments suggest
that melody perception is a learned ability [27] while other
researches indicate that there is also a strong innate com-
ponent to it [5, 14, 21].

2.1 Pitch Perception

Pitch is a perceptual measure strongly correlated to the fun-
damental frequency F0 of a stimulus [5, 6, 10, 14]. There
are two approaches to estimate the F0: the first one in-
volves the spectrum, the second one the waveform. Phys-
iological experiments show that the cochlea performs a
frequency analysis of auditory stimuli, see Figure 1, thus
suggesting the spectral model [6, 10, 23]. On the other
side, some early psychoacoustical experiments involving
the missing fundamental can not be explained by the spec-
tral modelc̃itemoore,cheveigne, thus suggesting temporal
mechanisms involving autocorrelation. Meddis et al. pro-

Temporal analysis has been encouraged by physiologi- 
cal studies demonstrating phase locking of auditory-nerve 
(AN) fiber activity to tone period (Kiang et al., 1965) and 
using autocorrelation techniques to isolate pitch effects 
(e.g., Evans, 1986; Horst et al., 1986). The insensitivity of 
place methods of analysis to formant structure in high-am- 
plitude speech sounds (Young and Sachs, 1979) has also 
encouraged the development of ALSR (averaged localized 
synchronous rate) temporal representations of AN activity. 

These ideas have been reflected in modeling activity 
which has concentrated on the temporal information in the 
signal (e.g., Broadbent, 1975; Moore, 1982; van Noorden, 
1982; Loeb et al., 1983; Lyon, 1984; de Cheveign•, 1986; 
Patterson, 1987; Lazzaro and Mead, 1989; Slaney and Lyon, 
1990). All authors have emphasised the advantages of tem- 
poral analysis in extracting pitch. Some voice-separation al- 
gorithms seek to use pitch difference between voices in order 
to select and enhance one voice at the expense of the other. In 
various ways these models use autocorrelation to identify the 
pitches of the voices (Weintraub, 1985; Gardner, 1989; Ass- 
mann and Summerfield, 1990; Meddis and Hewitt, 1990). 

A systematic examination of the properties of temporal 
models of auditory perception is clearly required at this 
stage. Unfortunately, the variety of models makes this diffi- 
cult. However, we have developed one such model which is 
sufficiently close to the main stream of recent developments 
to make reasonable claim to be representative of the genre. 
The model performs autocorrelations on the activity of 
groups of simulated nerve fibers and aggregates these auto- 
correlation functions (ACFs) to produce a summary auto- 
correlation function. It will be shown that this summary 
ACF contains the necessary information for the purpose of 
simulating human listener performance in a wide range of 
psychophysical studies including ambiguous pitch, pitch 
shift of equally spaced harmonics, pitch of stimuli with in- 
harmonic components, pitch of musical chords, repetition 
pitch, and the existence and dominance regions for pitch 
perception. In a companion paper (Meddis and Hewitt, 
1991 b), we explore the ability of the same model to simulate 
the human listener's sensitivity to stimulus component 
phase effects. 

I. MODEL DESCRIPTION 

A. Introduction 

The model outlined in Fig. 1 consists of a number of 
stages: ( 1 ) outer-ear frequency bandpass function; (2) mid- 
dle-ear low- and high-frequency attenuation; (3) mechani- 
cal filtering of the basilar membrane; (4) mechanical to neu- 
ral transduction at the hair cell; (5) refractory inhibition of 
firing of auditory-nerve fibers; (6) estimation of the distribu- 
tion of intervals among all spikes originating from fibers 
within the same channel; (7) summation of interval esti- 
mates across channels; and (8) pitch extraction by inspec- 
tion of the summary ACF. 

Each of these stages will be described individually. 
However, the following characteristics are valid throughout. 
The signal was sampled and the model updated 20 000 times 
per second. From stage 4 onward, we describe the process in 
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FIG. 1. Processing sequence of the model. 

terms of spikes and intervals among spikes. However, the 
computation was carried out exclusively in terms of the 
probability of a spike's occurring; we did not generate and 
monitor individual spikes. Our measure of the time intervals 
among spikes was also based on the time interval between 
each spike and all other spikes occurring within the same 
channel. 

Our stimuli are purely numl•er sequences and have no 
physical dimensions but we use the convention that a signal 
rms of 1 is treated as 0 dB 1 (decibel re: rms = 1 ). (This is a 
departure from previous publications, e.g., Meddis, 1986, 
1988, where a signal rms of 1 was treated as 30 dB.) Since the 
scale is arbitrary, we have chosen values that show a fairly 
close parallel with SPL ratings in psychophysical studies. On 
this scale, our standard auditory-nerve fiber to be described 
below has a threshold of 15 dB 1. 

Except where explicitly stated, signals are 100 ms in 
duration and the results represent the state of the model at 
the end of this time. For periodic stimuli, the stimulus length 
may be adjusted slightly to ensure that the stimulus ends at 
the major amplitude peak of the cycle. Signal waveforms in 
figures always represent the last 7.5 ms of the stimulus, 
which is three times the time constant of the model (see stage 
6). This time window represents the section of the stimulus 
that contributed to the final running autocorrelations. 

B. Stages I and 2: Outer- and middle-ear effects 
Sound entering the outer ear is subject to a pressure gain 

at the tympanic membrane relative to the entrance to the ear 
canal; this pressure gain is maximal in the region between 2 
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Figure 2. Schematic outline of pitch model by Meddis et
al. [22]

posed a unified model of pitch perception taking into ac-
count both spectral and temporal information [22], see Fig-
ure 2. It is reasonable to assume that humans use both
mechanisms, even though the latter is not well understood
yet [5, 6, 10, 14].

2.2 Perceptual cues for segregation and identification

Auditory stream segregation is an important component of
melody perception. Human listeners can almost effort-
lessly identify sequences of notes played by different in-
struments. That requires to segregate concurrent stimuli
coming from different sources and aggregate successive
stimuli coming from the same source. The most impor-
tant perceptual cue for segregation appears to be timbre [5,
13, 14]. See the next section for more details.

Also important to melody perception and identification
appear to be asynchrony, i.e. playing the melody note
slightly earlier than other notes, and loudness [9].

Many melody detection algorithms use an equal loud-
ness curve filtering at the initial stage. Humans are more
sensitive to sounds at particular frequencies and less sen-
sitive at other frequencies. Perceptual experiments have
been conducted to establish the equal loudness curve, i.e.
a curve in the frequency and sound pressure level space
that is perceived with constant loudness at different fre-
quencies of the audible spectrum. Since loudness is an im-
portant perceptual cue for melody detection, making sure
to analyze the perceived loudness and not just the energy



at a given frequency is critical for estimating the salience
of a particular pitch [5].

Finally, masking can affect perception of notes and thus
melody identification. An established model of the basi-
lar membrane and auditory nerves assumes the existence
of critical bands or auditory filters. Simultaneous stimuli
with frequencies inside the same critical band interact and,
under certain circumstances, one sound can mask, i.e., can-
cel, the other [5,23]. While it is hardly arguable that music
composers exploit the masking effect intentionally when
composing music, masking plays a definite role in listening
and perception. One of the methods discussed in section 3
exploits masking to improve the accuracy of the melody
identification.

2.3 Stream segregation by timbre

Since the most significant perceptual cue for segregation
of auditory streams appears to be timbre, it is interesting
to review the status of research. Unfortunately, very lit-
tle success has been attained in the recent years, probably
because of the intrinsic difficulty in realizing ecologically
valid experiments, as previously mentioned. One of the
most significative results are still those presented by Iver-
son in 1995 [13].

Previous works established that onset transients play a
fundamental role in instrument identification. Identifica-
tion accuracy decreases when onsets are removed, while
accuracy is very high when only transients are presented.
Nevertheless, Iverson et al. also discovered that dynam-
ics attributes present throughout tones are also responsible
for similarity judgements [12]. In his 1995 paper, Iverson
claims that both identification and similarity play a role in
auditory segregation, thus concluding that onsets and sus-
tained regions of tones must be analyzed.

Iverson used sequences of equally loud tones produced
by orchestral instruments in an experiment similar to Breg-
man’s seminal experiment on segregation [2]. Two set of
sequences were presented to the participants: a physically
isochronous sequence and a perceptually isochronous se-
quence. The former was comprised of the first 130 ms of
a tone followed by a 10-ms decay to silence. The latter
was created estimating the Perceptual Attack Time (PAT)
for different instruments. The reason for this is that the
onset of a note is perceived at a later time respect to when
a player starts playing a note. Intuitively, percussive in-
struments have a faster attack, while woodwinds and brass
have slower ones. The difference can be as low as 1.6 ms
for a vibraphone and as high as 52.6 ms in the case of a
clarinet. Iverson used Multidimensional Scaling Analysis
to analyze the results.

The main result of the experiments was that judgements
of streaming are highly correlated with similarity judg-
ments, i.e. it is easier to segregate dissimilar instruments.
Shorter PATs segregate more respect to longer PATs, and
instruments with dissimilar PATs also segregate more.

Finally, the author discusses the challenges in interpret-
ing the results because “natural musical instrument tones
had many uncontrolled acoustic factors.” I would add that

even if we know the importance of timbre in stream segre-
gation, we still do not know how to exploit timbre in ma-
chine extraction algorithms when multiple auditory streams
are mixed together. The difficulty of controlling acoustic
features of natural musical instruments might be partially
overcome using sampled libraries. Modern virtual instru-
ments closely reproduce their natural counterparts, so more
realistically sounding experiments can be designed while
maintaining control over experiment variables.

3. MELODY EXTRACTION

MIREX 2013 defines the audio melody extraction task as
“to identify the melody pitch contour from polyphonic mu-
sical audio. Pitch is expressed as the fundamental fre-
quency of the main melodic voice, and is reported in a
frame-based manner on an evenly-spaced time-grid. 1 ” The
task is divided in two sub-tasks: voicing detection, i.e. de-
ciding whether a particular frame contains a melody pitch
or not, and pitch detection, i.e. selecting the most likely
melody pitch in a voiced frame. The evaluation of the
methods is based on the two sub-tasks. The Voicing Detec-
tion is the accuracy of detecting voiced frames. The Raw
Pitch Accuracy is the accuracy of detecting the right pitch
(within ± 1/4 tone) in voiced frames. The Overall Accu-
racy combines both voicing detection and pitch estimation.
Table 1 shows the results of the methods discussed in this
section. Starting from 2006, MIREX introduced multiple
datasets for evaluating the audio melody extraction task.
Most algorithms are very sensitive to the dataset so the ta-
ble shows the minimum and maximum accuracy.

Several methods for automatic melody extractions have
been proposed in the past 15 years, and many of them
have been submitted to MIREX for evaluation. The biggest
group is comprised of salience-based methods. They start
with a spectral representation of the audio signal, then they
compute a time-frequency representation of pitch salience.
The peaks of this salience function are potential F0 can-
didates for the melody. Finally, the best F0 in each frame
is selected based on some tracking model. The two most
important components of these methods are the salience
function and the pitch selection function. Some methods
use a model of the cochlea to detect perceptual dominant
fundamental frequencies [24, 26], other methods use har-
monic summation with weights learned from instrument
training data [16], while others let different F0s compete
for harmonics using Expectation–Maximization algorithm
to estimate latent harmonic components [11].

Some algorithms are limited to detect and extract sung
melodies, i.e. extract the vocal line in a song while ignor-
ing melodies or solo parts played by instruments. These
methods exploit some features specific to the human voice,
like the range, the timbre and the presence of vibrato and
tremolo [4].

Finally, several other methods have been proposed. Some
approaches, like Poliner’s [25], while providing good re-
sults overall have not been further explored since their ap-

1 http://www.music-ir.org/mirex/wiki/2013:
Audio_Melody_Extraction



pearance. Others, like Arora’s [1] are very new and promis-
ing and it is arguable that they will be studied more in the
future.

The next three sections summarize some of the methods
for melody extraction proposed in the past decade. Sec-
tion 3.1 describes salience based methods, section 3.2 cov-
ers voice separation methods, finally section 3.3 describes
other approaches.

3.1 Salience based methods

The method proposed by Paiva et al. [24] starts with com-
puting a cochleagram followed by a correlogram. Accord-
ing to the authors this is sufficient for melody-detection
task as it allows to capture only the pitches that most likely
contain the main melody. Then the pitches are grouped
into contiguous segments to detect notes. The algorithm
is based on a minimum note duration of 125 ms. This
threshold is based on empirical tests after an observation
by Bregman, “Western music tends to have notes that are
rarely shorter than 150 ms in duration” [2]. The melodic
notes are selected using Gestalt principles, in particular
sequences of pitches are established by intensity and fre-
quency proximity. One of the most common error in pitch
estimation and melody detection is the octave error (i.e.,
picking the right chroma but on a different octave, typically
an octave or two higher than the right note). The algo-
rithm uses another perceptual rules suggested by Bregman
to eliminate the ghost octave notes, the rule of harmonic-
ity and common fate [2]. The method looks for notes with
common onset or ending and common modulation, that is
whose frequency and salience sequences move in parallel
octaves. Finally the most salient notes are selected by in-
tensity and melody smoothness. The whole algorithm is
summarized in figure 3.

The method proposed by Salamon et al. [26] starts by
applying an equal loudness filter to the original audio fol-
lowed by FFT. Due to the poor frequency resolution of
FFT in the lower range, given the short frame window,
the method also uses the phase vocoder method to pro-
vide a more accurate estimate of the peak’s true amplitude
and frequency. The salience function is computed as the
sum of the weighted energies of the harmonics of the fre-
quency peaks. The peaks of the salience function are the
melody F0 candidates. The F0 candidates are then grouped
into pitch contours after pruning the peaks that fall under
a salience threshold. The grouping is performed using Ge-
stalt proximity principles. Finally the melody is selected
by detecting the non-voiced sections and filtering out oc-
tave errors and pitch outliers. The use of the phase vocoder
to improve the resolution at lower frequencies might be the
biggest advantage of this method compared to the previous
one. The authors also claim to have improved the voicing
detection over previous approaches, even though this task
seems to be very dependent on the dataset, as shown by
the false alarm rate shown at the end of the paper, which
ranges from 5% in the best case to 24% in the worst.

The method proposed by Liao et al. [19] tries to exploit
difference perceptual cues including loudness and timbre

similarity and also accounts for masking effect. After the
FFT four peaks are selected as follow: two peaks are based
on loudness and masking, to select perceptually dominant
peaks, and two more peaks are selected based on cepstral
envelope and noise envelope respectively to select energy
dominant peaks. The melody is then selected out of the
candidate peaks using a Hidden Markov Model with a tran-
sition probability trained to privilege trajectory smoothness
and spectral envelope similarity. The use of HMM to select
the candidate peaks seem to be a sensible choice, instead of
applying a priori melody principles the HMM might learn
voice leading rules and practices from real examples. In
practice the algorithm performs generally worse than the
previous one, particularly on certain dataset. The poor per-
formances might be due to a poor voicing detection mech-
anism, though.

3.2 Voice separation methods

The method proposed by Hsu et al. [4] is limited to de-
tect sung melodies and is based on voice separation and
trend estimation. The first step is critical for the algo-
rithm. Since single pitch detection algorithms are much
more robust and accurate than multi-pitch detection algo-
rithms, if the voice source can be separated from the mix-
ture, a single-pitch detection algorithm can be applied to
the separated audio and get more a accurate result. Source
separation is hardly a solved problem in the general case.
Previous attempts to separate a voice source from the ac-
companiment were based on the limited range of the hu-
man voice. Still the range of fundamental frequencies for
a singer can go as low as 80 Hz and as high 1100 Hz, even
though lower or higher frequencies can be sung at times.
Such a large range impacts the accuracy of the voice sep-
aration methods so this proposed algorithm uses a trend
estimation step to reduce the range to be searched at any
given time frame. The trend estimation process is shown in
figure 4. The vocal component enhancement step is based
an Harmonic/Percussive Sound Separation algorithm pro-
posed by Tachibana et al. [28] The two step process is
aimed at attenuating the energy of harmonic instruments
and percussive instruments. The sinusoidal partial extrac-
tion step is similar to the same step in the salience based
algorithms. The instrumental partial pruning step uses a
Gaussian Mixture Model trained on voice partials and in-
strumental partials and uses the fact that human voice nat-
urally contains both strong vibrato and tremolo while most
of the musical instruments contain only one of them. Fi-
nally the pitch range estimation estimate the most probable
vocal F0 in each frame then extends its boundary to tolerate
for pitch shifting in the vocal range. Limiting the extrac-
tion to sung melodies has the definite advantage of lower-
ing the complexity of the task, since some specific features
of the human voice can be exploited to detect voiced re-
gions and extract the melody. Unfortunately, it appears that
there is still a lot of variability between different singers in
range and timbre, so the overall accuracy is not higher than
general, salience-based methods.

The algorithm by Yeh et al. [30] is an improvement of



Figure 1. Overview of the 
melody-detection system. 
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peaks in the pitch-salience curve. A maximum of 
five pitch candidates is extracted in each frame. 
This value provided the best trade-off between pitch- 
detection accuracy and trajectory-construction 
accuracy in the following stage. Details on the 
pitch-detection algorithm can be found in Paiva, 
Mendes, and Cardoso (2004). 

Unlike most other melody-extraction systems, 
we attempt to explicitly distinguish individual mu- 
sical notes (in terms of their pitches, timings, and 
intensity levels), maintaining as well the exact fre- 
quency values that might be necessary for the anal- 
ysis of performance dynamics or timbre. This is the 
goal of the second stage of the algorithm (Determi- 
nation of Musical Notes, in Figure 1). To this end, 
we first create pitch tracks by connecting pitch can- 
didates with similar frequency values in consecu- 
tive frames (the pitch trajectory construction, or 
PTC, step). We based our approach on the algorithm 
proposed by Xavier Serra (1997). The general idea is 
to find regions of stable pitches that indicate the 
presence of musical notes. The number of pitches in 
each frame is small, and so they are clearly spaced 
most of the time. Hence, the number of resulting 
trajectories is significantly lower compared to ap- 
proaches based only on sinusoidal tracks (e.g., Serra 
1997). Therefore, our approach minimizes ambigui- 
ties in trajectory construction. 

To avoid losing information on the dynamic prop- 

erties of musical notes, we took special care to keep 
phenomena such as vibrato and glissando within a 
single track. Thus, each trajectory may contain 
more than one note and should, therefore, be seg- 
mented in time. This is performed in two phases, 
namely frequency-based segmentation and salience- 
based segmentation. In frequency-based segmenta- 
tion, the goal is to separate all notes of different 
pitches that might be present in the same trajectory. 
This is accomplished by approximating the pitch se- 
quence in each track by a set of piecewise constant 
functions, handling glissando, legato, vibrato, and 
frequency modulation in general. Each detected 
function will then correspond to a MIDI note. De- 
spite this quantization effect, the original pitch se- 
quences are still kept so that the information on 
note dynamics is not lost. 

The algorithm for frequency segmentation is 
based on a minimum note duration of 125 msec. 
This threshold was set based on the typical note du- 
rations in Western music. As Albert Bregman points 
out, "Western music tends to have notes that are 
rarely shorter than 150 msec in duration" (1990, 
p. 462). We experimented with a range between 60 
and 150 msec, but the defined threshold of 125 
msec led to the best results. It is noteworthy that 
this value is close to the one mentioned by Mr. 
Bregman. 

With segmentation based on pitch salience varia- 
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Figure 3. Overview of the melody detection system by Paiva et al. [24]

2.1. Vocal Component Enhancement 
 
Our trend estimation starts from a vocal enhancement algorithm 
proposed by Tachibana et al. [3]. They used harmonic/percussive 
sound separation (HPSS) to enhance singing voice in two stages. 
In the first stage, they attenuate the energy of harmonic 
instruments (e.g., guitar and flute). The energy of percussive 
instruments (e.g. drum and cymbal) is further attenuated in the 
second stage. 

In this study, we only apply the first stage of HPSS which 
attenuates the energy of harmonic instruments. The reason is that 
the sounds of percussive instruments are aperiodic and do not 
create much difficulty in estimating the pitch of singing voice. In 
addition, the second stage usually corrupts the singing voice in the 
spectrogram and degrades the performance of our partial extraction 
algorithm. 
 
2.2. Sinusoidal Partial Extraction 
 
This stage extracts sinusoidal partials from a mixture. First, we 
apply the multi-resolution fast Fourier transform (MR-FFT) 
proposed by Dressler [5]. It removes the unreliable peaks that do 
not originate from periodic sounds by considering the local 
characteristics of phase spectrum, or more precisely, the 
instantaneous frequencies of neighboring frequency bins. 

Reliable peaks are then used to form sinusoidal partials. 
Because some peaks in the same time frame may correspond to the 
same sinusoidal component, we first check the instantaneous 
frequencies of the peaks in each time frame. If their instantaneous 
frequencies are close enough, the one with the largest magnitude is 
selected. 

A grouping algorithm is applied after peak selection. The goal 
of the algorithm is to group peaks so that each peak corresponds to 
a partial. It consists of three steps: initial grouping, re-grouping, 
and refining.  
1) Initial grouping: It starts by selecting any ungrouped peak in 

the spectrogram as the first peak in the group and recursively 
groups other peaks neighboring to the group until every peak 
belongs to a group. To choose a peak from the time-
overlapping peaks in a group, we apply a pitch dynamic 
prediction algorithm which finds a least-squares straight line 
fitting to the three most recent peaks and predicts the next 
peak value by extrapolation [6]. The closest peak is selected if 
the difference between it and the previous peak is not larger 
than a semitone. If no peak exists, the group is divided into 
two.  

2) Re-grouping: The objective of this step is to connect the 
partials that are likely to be originated from the same one. We 
first compute the Euclidean distance between each pair of 

groups. Two groups are merged into one if their distance is 
less than 4.5 grid points on the T-F plane and have a time 
overlap not longer than 2 frames. 

3) Refining: Because the re-grouping step introduces time-
overlapping peaks or gaps for a group, this step selects one 
peak from overlapping peaks and fills the gaps for each 
partial. For selecting time-overlapping peaks, the one with the 
largest magnitude is retained. For filling the gaps, values of 
frequency and magnitude are interpolated according to the 
adjacent peaks. 

 
2.3. Instrumental Partial Pruning 
 
This stage considers the natural differences between vocal partials 
and instrumental partials: vibrato and tremolo. Vibrato refers to the 
periodic variation of pitch (or frequency modulation), and tremolo 
refers to the periodic variation of intensity (or amplitude 
modulation). These two features were proposed by Regnier et al. 
[7] and were previously used to detect the presence of singing 
voice. The idea of using these two features comes from the fact 
that human voice naturally contains strong vibrato and tremolo at 
the same time while most of the musical instruments contain only 
one of them [8].  

Two attributes are computed to describe vibrato and tremolo: 
the rate and the extent of vibrato or tremolo. For human singing 
voice, the average rate is around 6Hz for both vibrato and tremolo. 
Hence we determine the relative extent around 6Hz by using the 
Fourier transform for both vibrato and tremolo. 

More specifically, to compute the relative extent of vibrato 
for a partial )(tpk  existing from time it  to jt  , the Fourier 

transform of its frequency values )(tf
kp is given by: 
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Lastly, the relative extent around 6Hz is computed as follows: 
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The relative extent for tremolo can be computed in the same way 
except that amplitude 

kpa  is used instead of 
kpf . 

Different from previous work, we consider partial detection as 
a classification problem. Given feature vectors ^ `

kpkpXX )(  

where ),()(
kk ppk afpX '' , two Gaussian mixture models 

(GMMs) V*  and I*  are trained for vocal partials and 
instrumental partials. The vocal/instrumental decision for the 
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Fig. 1.  Schematic diagram of trend estimation. 
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Figure 4. Schematic diagram of trend estimation by Hsu
et al. [4]

the previous algorithm. It is still limited to sung melodies
but it integrates three methods: forward and backward trend
estimate and HMMs. The final step of the algorithm, the
pitch combination scheme, gets multiple pitch contours as
input. The papers propose three different mechanisms for
picking the best contour: median, mean and dynamic pro-
gramming. Experiments on the MIR-1K dataset shows that
the median method always gives the best overall accuracy
so it is proposed as the preferred mechanism. Integrating
multiple approaches improves the trend estimation algo-
rithm, as shown by the results presented by the authors, but
since the accuracy of the previous method is heavily depen-
dent on the dataset, it is arguable that this method is too.
Interestingly, this method was not submitted to MIREX for
independent evaluation.

3.3 Other methods

The method proposed by Arora et al. [1] uses a novel ap-
proach to sung melody extraction. The method, inspired
from the Kalman Filter framework, aims at tracking a clus-
ter of harmonic partials, called a comb. While other meth-
ods try to estimate the F0 calculating the salience of each
partial, this method tracks all the harmonics from the same
source at the same time, improving the accuracy and avoid-

ing the octave error altogether. This method can also be
implemented online. This method has several advantages
over the previous ones, including the fact that it attempts to
track all the harmonics from the same source at the same
time, which is arguably something that human beings nat-
urally do. Streaming pitches by timbre seems to be the
natural approach to source separation as well.

The method proposed by Poliner et al. [25] differs from
the other methods shown so far as it does not assume any
prior knowledge of the domain, i.e. no assumptions are
made on the harmonicity of the sounds. The authors claim
that in other fields, like speech recognition, it is possible
to build classifiers for particular events without any prior
knowledge of how they are represented in the examined
features. They tried to apply the same approach to melody
extraction using a Support Vector Machine (SVM). SVM is
a supervised classification technique. The authors trained
the SVM with labeled audio synthesized from MIDI tracks,
where the lead melody track is labeled, and extracted from
multi-track recordings, where the vocal track is recorded
separately. This method has the advantage of applying
pure machine learning techniques without any assumptions
from the domain. While domain knowledge is obviously
very important when solving a problem, music is so di-
verse that most rules and principles have a limited scope
of application; e.g., popular music is strcuturally differ-
ent from classical music in many aspects; harmonic and
melodic practices common in tonal music cannot be ap-
plied to modern and contemporary music.

The method proposed by Sam Myer for MIREX2012 is
also radically different from the other methods presented
so far as it is not based on any perceptual or signal process-
ing techniques. Instead it leverages MIDI data mining over
the Internet. The method has not been published nor peer-
reviewed so further details are not available, nonetheless it



Method Overall Accuracy
Paiva et al. [24] 61.1%
Poliner et al. [25] 61.1%
Salamon et al. [26] 61%–85%
Liao et al. [19] 35%–73%
Hsu et al. [4] 61%–83%
Yeh et al. [30] 82.6%
Arora et al. [1] 50%–80%
Myer et al. 47%–77%

Table 1. Accuracy of the presented methods.

performs surprisingly well compared to the other methods
on the MIREX datasets.

4. CONCLUSIONS

This paper has given an overview of the melody extraction
problem, the human mechanisms for melody perception,
and the methods proposed for automatic melody extrac-
tion from audio. Despite very little understanding of hu-
man cognitive mechanisms of melody perception, most al-
gorithms exploits one or more perceptual cues to improve
accuracy. On the other sides, a few algorithms that do not
explicitly exploit perceptual cues have been proposed and
they achieve comparable accuracy in most tests. It might
be argued that machine learning techniques might learn the
perceptual cues from the training sets, though.

It would be interesting to apply machine learning tech-
niques, especially neural networks and hierarchical clus-
tering algorithms, to an annotated corpus of music and an-
alyze the results. This approach has been successfully ap-
plied to other fields, like linguistic and vision, and has pro-
vided useful insights on human cognition processes. One
important question from a cognitive point of view is what
makes a melodic line stands out? Furthermore, what makes
a musical line memorable? The last question is especially
important for applications like query-by-humming where
users are more likely to query a database with memorable
features of a song.

On the perceptual side, more research is needed on pitch
determination, timbre perception and stream segregation.
Understanding how a complex auditory stimulus, e.g., a
single note played by an instrument, can generate a sta-
ble perceptual representation, i.e., a stable auditory image,
might lead to a model that can be simulated with higher
accuracy than current methods. Timbre perception and
stream segregation are strictly related as humans naturally
and effortlessly combine all the harmonics produced by
a given instrument into a single auditory percept. Once
again, a deep understanding of these complex mechanisms
might provide insights on how to automate the process via
signal processing.

In conclusion, more research is needed in both the cog-
nitive and computer audition fields. On the cognitive side
the biggest open problem is how to design ecologically
valid experiments while maintaining a full control on the

experiment variables. On the signal processing side, the
biggest challenge is how to segregate streams and track
pitches played by the same source, i.e. tracking pitches
by timbre.

Exploiting perceptual cues seems to be a sensible ap-
proach so far, but more sophisticated signal processing and
machine learning approaches should be pursued further.
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