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ABSTRACT 

This paper gives an overview of the state of current re-
search in recognition of musical instruments in complex 
audio signals. The criteria for a complex musical signal in 
this case are polyphony (multiple notes being present at 
the same time) and the occurrence of multiple instru-
ments with their own, unique acoustic signature (other-
wise known as timbre, hence “polytimbral”) within a giv-
en time frame of the signal. The primary goal of this re-
search is to gather musically meaningful information 
about the instruments present in a musical signal and to 
present an output that can be understood by the user and 
can also be used later by other algorithms. In order to 
reach this goal, recognition systems have certain re-
quirements in order to be considered acceptable and use-
ful for musical instrument recognition. There is also a 
general architecture that these systems exhibit in their 
implementation. Two distinct approaches to musical in-
strument recognition dominate the field of current re-
search: pure pattern recognition and informed pattern 
recognition. In this paper, both of these approaches are 
explained and examined (as well as the different methods 
used in relevant implementations in recent articles). Stud-
ies that focus on percussive instruments exclusively are 
not considered, as they exhibit different challenges and 
algorithmic complexities. This paper concludes with ob-
servations and suggestions for further research, including 
reflections on the prevalence of the use of personal music 
databases (as opposed to public databases specifically 
created for instrument recognition) and the resultant issue 
of comparing the performance of different instrument 
recognition algorithms. 

1. INTRODUCTION 

1.1 Standards of Algorithms 

Martin [20] proposed that there are six main standards 
that sound-source recognition systems should be evaluat-
ed by, and that implementations of such systems should 
strive to achieve in each category.  
 The first criterion is generalization. Generaliza-
tion refers to the ability of implementations to create in-
strument categories that accurately model the true “gen-
eral” audio fingerprint of an individual instrument, de-
spite some variances. For example, a category that wish-
es to model an acoustic guitar should be able to general-

ize that acoustic guitars made of different types of wood 
should all be able to be grouped into its acoustic guitar 
category. Also, an example widely applicable to instru-
ments is the variable of sound loudness, which should 
not affect the modeling of such categories. This criterion 
seeks to create stability in the structure.  
 The second criterion concerns data handling. 
Recognition systems should be able to process real data, 
not only synthesized sound sources and synthesized 
acoustic mixtures but real acoustic situations. The com-
plexity of these real-world signals contains much more 
deviations than synthesized data, and (much like the 
generalization criterion) leads to increased stability in the 
system.     
 The third criterion is scalability. This concerns 
the ability of a musical instrument recognition system to 
learn new instrument categories in an elegant and intui-
tive way. A capable system should be able to be imple-
mented with different numbers of categories and the in-
fluence of the amount of categories on the system’s per-
formance should be observable and quantifiable. 
 The fourth criterion is the robustness of the sys-
tem. Robustness refers to the ability of the system to per-
form under non-ideal circumstances (which could in-
clude, for example, the presence of reverberation and 
non-source associated noise).   
 The fifth criterion is the adaptivity of the sys-
tem. According to this principle, musical instrument 
recognition systems should employ semi-supervised 
learning algorithms that have to the ability to update 
their definitions periodically according to data gleaned 
from new inputs.     
 The sixth criterion is the ability of the imple-
mentation of the recognition system to be processed in 
real time. Since perception of sound is a time dependent 
process, it is important to approach the problem of in-
strument recognition as a processing of a sequence of 
time instances (i.e. frames). 

1.2 Architecture of Algorithms 

The general architecture of musical instrument recogni-
tion systems are similar in regards to their modular de-
sign. Fuhrmann [13] describes four general processing 
steps in any given algorithm: pre-processing, feature 
processing, classification, and post processing. As pre-
viously stated, these steps are modular and can be modi-



  

 

fied, replaced, or sometimes skipped altogether in certain 
implementations.      
 Pre-processing involves leveraging prior 
knowledge for the sake of better informing the musical 
instrument recognition system. This prior knowledge can 
be as simple as raw data input by a user (such as defining 
how many instruments are in the acoustic mixture), or it 
can be a separate, complex algorithm (such as source 
separation). Audio segmentation (windowing) is general-
ly seen as part of the pre-processing step.  
 Feature processing is the procedure of extract-
ing low-level information (features) in the audio seg-
ments. Each segment is associated with a set of values 
(one for each extracted feature) called a feature vector. 
There are many features that can be extracted; these fea-
tures are briefly explained in Section 3.2: Audio Seg-
ment Features.     
 The classification processing step compares 
trained class models to the feature vector for each seg-
ment and gives each potential class a probability value.
 Post-processing re-weights the output from the 
classification processing step using other information. 
This  “external” information may be garnered from the 
context of previously processed audio segments. From 
this step, the final output information is produced for 
each audio segment. 

1.3 Additional Considerations 

There are other features to be considered when imple-
menting algorithms for musical instrument recognition 
studies. One of the most important aspects to consider is 
whether or not any pre-processing or post-processing was 
involved in the implementation. Related to pre-processing 
is the consideration of if the implementation requires cer-
tain a priori knowledge.     
 In the classification step performance is greatly 
influenced by the number of different categories that the 
detected musical instruments can be placed into (which 
can be considered as a measurement for the overall scope 
of the implementation). For example, it can be assumed 
that an implementation that is only concerned with sort-
ing inputs into two categories, woodwinds and non-
woodwinds, will perform much better than one that has a 
separate class for each woodwind instrument. 
 The performance of such implementations is al-
so greatly related to restrictions on the input. Some stud-
ies only consider a small number of different input in-
struments, and also a low value for the number of maxi-
mum polyphony. Another restriction to the input that is 
closely related to instrumentation is the processing of au-
dio mixtures from only certain genres. This restricts 
acoustic variation and can lead to higher performance 
measures.     
 Perhaps one of the most important factors that 
can influence the performance of musical instrument 
recognition is the way the algorithm input is generated. 

This means that the way the acoustic mixtures are created 
can prove to be very influential. The processed mixtures 
can be created completely artificially by MIDI. They can 
also be created manually by taking “real” solo instrument 
sources and mixing them. These solo instrument sources 
can vary in nature as well, as some may have artifacts 
such as reverberation that can confound algorithms. The 
most difficult input for musical instrument recognition 
algorithms to process is a real-world acoustic mixture (for 
example, a live recording of a string quartet in a reverber-
ant room). All of these factors must be considered when 
comparing different studies. 

 

2. METHODS 

2.1 Learning Algorithms 

This section aims to touch upon the most commonly used 
learning algorithms used in current musical instrument 
recognition studies. It is by no means an in-depth expla-
nation and discussion of the comparative strengths and 
weaknesses of each method, but instead seeks to provide 
a basic knowledge foundation so that the approaches 
mentioned in Section 4 can be understood on an elemen-
tary level. 

2.1.1 Unsupervised Learning Algorithms 

Unsupervised learning algorithms are techniques that cre-
ate classification categories from the input data only 
(without any prior knowledge of class membership). 
Among the most popular unsupervised learning algo-
rithms are mixture models, hidden Markov models, inde-
pendent component analysis, probabilistic latent compo-
nent analysis, and non-negative matrix factorization.  
 Mixture models are probabilistic models that 
represent the presence of subsets within an overall set. It 
seeks to make statistical inferences about the properties 
of subclasses, without being given information on the 
aforementioned subclasses [11].   
 Hidden Markov models (HMMs) are statistical 
Markov models in which the system that is to be modeled 
is assumed to be a Markov process (a memoryless sto-
chastic process) with unobserved states. HMMs are often 
used for temporal pattern recognition [22].  
 Independent component analysis (ICA) sepa-
rates multivariate signals into subcomponents that are ad-
ditive. It operates under the assumption that all of the 
subcomponents are statistically independent non-
Gaussian signals [4].    
 Probabilistic latent component analysis (PLCA) 
is a probabilistic model that defines spectra as distribu-
tions and extracts sets of additive components. It is an 
extension of probabilistic latent semantic indexing (PLSI) 
and exhibits sparsity and shift invariance [12]. 
  Non-negative matrix factorization 



  

 

(NMF) seeks to define a high dimensional matrix as a 
pair of two lower dimensional matrices. One of the matri-
ces acts as a “dictionary” of sounds, and the other acts as 
an excitation detector. The requirement that the three ma-
trices contain no negative elements makes it easier to in-
spect the data contained [25]. 

2.1.2 Supervised Learning Algorithms 

Supervised learning algorithms are techniques that de-
pend on information provided prior to evaluation. These 
algorithms learn relations between pre-defined categories 
and sample inputs. Supervised learning algorithms are 
usually implemented by nearest neighbor, artificial neural 
networks, and support vector machines. 
 Nearest neighbor algorithms seek to predict 
class memberships based on a set number of closest train-
ing examples in a multidimensional feature space. This 
algorithm is very simple to implement, as an object is 
simply classified by majority vote [7].  
  Artificial neural networks are systems 
that seek to model the central nervous system in their ap-
proach. The systems favor an interconnected approach 
that simulates neurons, which compute output values by 
sending input information through the created network 
[8].   
 Support vector machines (SVM) use sets of in-
put data to predict which of two possible classes each in-
put data point belongs to (otherwise known as non-
probabilistic binary linear classification). An SVM algo-
rithm is provided a training input data set (in which each 
provided data point is specified as belonging to a certain 
class) to create a model that can be used with future in-
puts to classify them according to where on the sample 
space they are located [6]. 

 

2.2 Acoustic Features 

There are a plethora of acoustic features that can be ex-
tracted from audio segments, and in many musical in-
strument recognition algorithm implementations dozens 
are considered. These acoustic features can be classified 
into related groups. These groups are described subse-
quently.      
 Mel frequency cepstral coefficients (MFCCs) 
are obtained by calculating the cepstrum of energy bands 
created from the Mel scale [19]. The cepstrum is calcu-
lated by taking the Inverse Fourier transform (IFT) of the 
logarithm of the calculated spectrum of the signal. The 
Mel scale is a pitch scale derived from psychoacoustic 
perceptions of pitch height. Implementations that take 
into account MFCCs generally use the first 10 to 20 coef-
ficients to create a spectral envelope estimation.
 Linear prediction coefficients [23] are also used 
to create a spectral envelope of audio signals. The spec-
tral envelope is created by extrapolating sample values of 

the signal, which is done by combining the previous sam-
ples and assigning weights to them. The coefficients cal-
culated are these weights.    
 Local energies [21] are helpful and easily calcu-
lated acoustic features. Local energy is calculated by di-
viding the frequency spectrum into energy bands. The 
energies of these bands are considered as well as the total 
energies of groups of bands.   
 The pitch present in an audio signal is an im-
portant acoustic feature. Estimated pitch values can be 
used to determine the harmonic content of a signal. Asso-
ciated features include pitch confidence levels and har-
monic energy ratios [2] [21].  
 Spectral features [21] are a large group of fea-
tures used to describe very low-level aspects of the spec-
trum of a signal. Among the features most used are the 
spectral flatness, crest, flux, roll-off, centroid, spread, 
skewness, kurtosis, and general spectral complexity [26]. 

3. STUDIES 

The following section reviews some of the more recent 
approaches to musical instrument recognition. In light of 
the scope of this paper, only studies that incorporate 
polytimbral, polyphonic inputs are considered for review. 
Also, studies that focus on percussive instruments exclu-
sively are not considered, as they exhibit somewhat dif-
ferent challenges and algorithmic complexities. Studies 
are presented by approach and within each subsection, by 
date of publication.   
 There are two main approaches to polytimbral, 
polyphonic instrument recognition: pure pattern recogni-
tion and informed pattern recognition. Pure pattern 
recognition algorithms are performed on unadulterated 
inputs (on the polyphonic signal) and identify dominant 
instruments in the signal (or in some cases just the most 
dominant instrument). Complex inputs are handled by 
modifying category constraints and definitions according 
to the inputs. Informed pattern recognition algorithms 
place emphasis on pre-processing by applying source-
separation and/or multi-pitch estimation. 

3.1 Pure Pattern Recognition Algorithms 

Simmermacher [24] used SVM classifiers to categorize 
four different input instruments with polyphony of up to 
four simultaneous notes. The classifiers were trained by 
real note samples from the IOWA collection. MFCCs and 
MPEG-7 (multimedia content metadata) features were 
used in feature selection. It is reasonable to assume that 
the performance of the implementation was assisted by 
the choice of the four different input instruments (flute, 
piano, trumpet, violin), each of which are considered to 
be drastically different from each other in terms of acous-
tic signature (as well as theoretically motivated, since 
each of these instruments are regarded as belonging in 
different instrument “families”). Since the reported per-
formance of the algorithm was high, it would be interest-  
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ing to record the performance of the same algorithm us-
ing more similar instruments.   
 The approach of Essid [10] is interesting since it 
seeks to identify and label the timbres of groups of in-
struments (by SVM) as opposed to individual instru-
ments. This implementation poses certain philosophical 
issues in terms of generality and future development. The 
implementation supports four different instruments (and a 
polyphony of four) and has a relatively high amount of 
categories (12). As the support for more instruments is 
increased, the number of categories increases dramatical-
ly. This poses a problem in terms of processing time as 
the number of supported instrument combination classes 
increases.     
 Little & Pardo [18] used weakly-labeled data 
sets to obtain classifiers for instruments from polytimbral 
mixtures. Four different instruments were used from the 
IOWA collection and a polyphony of three was support-
ed. A comparison was made between classifiers trained 
by artificial audio mixtures and classifiers trained by iso-
lated notes, with those trained by the mixtures outper-
forming those trained by isolated notes by a significant 
factor.      
 Kobayashi [17] combined genetic algorithms 
with linear discriminant analysis to generate a feature set 
(as opposed to the SVM approach). Ten general instru-
ment categories were created, however the supported po-
lyphony was not reported. Although the reported recogni-
tion accuracy was quite high, this evaluation may not be 
accurate. Concern arises as it is clear that the music piec-
es used in the evaluation were also used in the training 
set. The music pieces were split up into 1-second win-
dows and were randomly chosen on an individual basis to 
either be in the training set or in the evaluation set. This 
may have overfit the classifiers and artificially caused 
high recognition.     
 Giannoulis and Klapuri [14] created a novel al-
gorithm that employs local spectral features and missing-
feature techniques to run a mask estimation system. This 
system defines spectral regions as “reliable” or “unrelia-
ble” for the estimation of a sound source. The reliable 
spectral regions are then associated with a class and unre-
liable vector elements are treated by bounded marginali-
zation. This approach outperformed a Gaussian mixture 
model (GMM) system that utilized MFCC features in po-
lyphonies of 2 and 4. However, the novel algorithm did 
not perform as well on monophonic signals. 

3.2 Informed Pattern Recognition Algorithms 

Eggink & Brown [9] used a fundamental frequency ap-
proximation algorithm to locate the partials of the domi-
nant instrument in a musical section. A GMM was uti-
lized to create models for five classical instruments and 
for each fundamental frequency. This was done to 
acknowledge the fact that an instrument’s timbre changes 
depending on the pitch of the note played. In addition, 

unknown frames were handled by retrieving a probabilis-
tic measure for each potential model and choosing the 
one with the highest probability.   
 Kitahara [16] introduced a thorough probabilis-
tic approach that utilized a fundamental frequency esti-
mation algorithm to detect different melodic lines in au-
dio mixture. This is augmented by an instrument proba-
bility system, which is governed by hidden Markov mod-
els that takes into account every fundamental frequency 
in addition to an additional 28 features. Note and instru-
ment probabilities are multiplied together to find the 
highest probability possible. Unfortunately, the model 
only took into account four different instruments and 
supported polyphony of just three.  
  The implementation of Cont [5] focused on a 
NMF system for pitch and instrument estimation. The 
modulation spectrum of the input was used to run the 
NMF algorithm. Note templates were created as single 
basis functions in the classification matrix. Unknown in-
puts were then compared to the matrix, and pitch and in-
strument estimations were output. Unfortunately, the al-
gorithm only supports polyphony of two notes (and con-
sequently two categories).   
 Heittola [15] developed an application that uti-
lized a polyphonic pitch estimation algorithm to run an 
NMF source separation algorithm. Each separated source 
is analyzed by pre-trained GMMs and is classified ac-
cordingly. There are a few issues with the implementa-
tion, as the number of sources present is needed as a pri-
ori information. Also, the audio mixtures are required to 
be separated into 4-second windows, which may be too 
long to be musically relevant. In addition, the number of 
sources in the 4-second window is assumed to remain 
constant, which is not an accurate reflection of a real-
world music mixture situation. 
  Burred [3] created timbre models of instruments 
by using principal component analysis on the extracted 
spectral envelopes of training data inputs. Source separa-
tion was utilized before template matching to order to ex-
tract the aforementioned envelopes.   
 The overall goal of the system described by 
Barbedo and Tzanetakis [1] is slightly different than most 
implementations. The goal is to identify all of the instru-
ments present in a signal, not in a single frame. All in-
struments detected as present in more than 5% of the 
frames is considered as “present” in the overall signal. 
Pre-processing algorithms are used for source estimation 
and fundamental frequency estimation for each frame. 
Upper partials are found by peak picking, which are then 
processed through a filter to isolate them. Features are 
then extracted and majority voting is used on each frame.  

4. DISCUSSION 

One of the greatest difficulties in comparing musical in-
strument recognition algorithm implementation is the 
prevalence of researchers using their own input data. A 



  

 

few databases exist that, at first glance, seem to be appro-
priate for such studies. Such databases (also referred to as 
collections) include the McGill University Master Sam-
ples (MUMS), and University of Iowa Musical Instru-
ment Samples Database (IOWA). While a few of the pre-
sent databases are extensive, there exist a few issues with 
these. The content of the databases tend to focus on a 
very “clean” representation of the instruments sampled. 
The instruments are usually recorded in anechoic cham-
bers and almost always as solo instruments. These sam-
ples, while helpful in some degree, are not reflective of 
natural acoustic situations. Natural acoustic situations 
would exhibit multiple instruments playing synchronous-
ly in “live” rooms (areas that have a natural reverbera-
tion). These natural situations would also include other 
confounds, such as noise. One of the main objectives of 
musical instrument detection algorithms is to be able to 
match a human level of ability, if not to exceed it. The 
process of human training for instrument detection is a 
lifelong process that does not depend on clean representa-
tions of instrumental mixtures. In light of this, algorithm 
training should aim to take into account the confounds of 
real-world stimuli. Including solo and group instrumental 
recordings may be a logical improvement to existing da-
tabases, and would also be an interesting focal point for 
the creation of new databases. Another improvement 
would be to include recordings made in multiple acoustic 
environments. These acoustic environments would be 
carefully characterized and measured prior to recording. 
Thus, not only would these recordings be good for com-
paring the performance of an algorithm in different 
acoustic conditions, but also these measurements may 
later be used in algorithms as a priori information to take 
into account real-world confounds such as reverberation 
and ambient room noise.    
 Another issue with comparing the performance 
of different studies is the issue of researchers not releas-
ing their training and evaluation input data. If the data is 
not easily accessible, it is difficult for further studies to 
be done that seek to recreate previous work with their 
own improvements and to compare the results in a mean-
ingful way. This relates back to the tendency for re-
searchers creating their own input data. If the audio for 
their studies were available, it seems that others would be 
less inclined to use their own datasets as well. 
 Extremely limiting input dependencies are also a 
problem. For example, some studies only consider musi-
cal samples from certain genres (or even only one genre).  
It is debatable whether or not genre should even be con-
sidered an important specification, as the types of input 
instruments is specifically what we are trying to identify.
 The ideal musical instrument recognition algo-
rithm would create a musically meaningful instrument 
model to match an input to. If classes were created to be 
both specific enough to not output a false positive, but 
also general enough to be able to take into consideration 

small variances in timbre (inherent by the nature of a 
physical musical instrument), these classes could be used 
in many different implementations and situations. The 
more thorough testing of classes could lead to a better 
understanding of the performance of different algorithms 
and also the relative usefulness of different acoustic fea-
tures.  
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