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ABSTRACT

The paper reviews the problem of single channel audio
source separation and methods from recent research liter-
ature to solve the problem. I attempt to provide a review
of the basic and advanced approaches, the assumptions be-
hind each model, the pre-processing of the input and out-
line the involved algorithms. The paper focusses on statis-
tical approaches to signal processing and does not include
CASA methods, those based on information such as pitch/
periodicity, continuity and other cues from human auditory
system. It also makes comparisons between methods based
on both subjective and objective evidence as provided in
the referenced papers.

1. INTRODUCTION

The general single channel source separation problem can
be framed like this: Estimate the signals s1(t), s2(t)..sr(t)
given only a signal y(t), which follows

y(t) = s1(t) + s2(t) + s3(t) + ...+ sr(t) (1)

y(t) is called the ’mixture’ signal. In practical cases, t
is a discrete quantity. The length of the available mixture
signal as well as each source is finite, say N . Then, the
goal of source separation is to find N values per source.
i.e. total of N ∗ r values, given only N values of mixture
y(t).

The problem of source separation is researched exten-
sively. To date, no machine has been built to solve this
problem in a general way. Many techniques have been
published in signal processing and machine learning liter-
ature, each with its own assumptions of the source signals
and mixture signal.

Source separation is called ’Blind’ when no information
about the source signals or the process of their mixing pro-
cess is presented in the problem. On the other hand, ”Non-
blind” source separation has some information about the
sources prior to separation available.

The following sections give an overview of five tech-
niques developed in the last decade. Section 2 presents
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the technique of source separation based on Bayesian sta-
tistical inference. Section 3 presents the NMF technique
and Sparse NMF method. Section 4 presents the Empir-
ical Mode Decompostion and 2-Dimensional NMF based
method. Section 5 presents the Hilbert Spectrum Subspace
Decomposition method. Section 6 presents the Bark-Scale
Wavelet Decomposition method. Section 7 presents a gen-
eral comparision between the presented methods.

2. BAYESIAN SINGLE CHANNEL SOURCE
SEPARATION

Authors Thomas Beierholm, Brian Dam Pedersen and Ole
Winthert [3] present a bayesian model for single channel
speech separation using factorized source priors in trans-
form domain. The priors are trained on speech samples,
followed by separation of mixture signal. Mixing coeffi-
cients are estimated using Maximum Likelihood estima-
tion.

2.1 Basic Assumptions

The method is presented for separation of two speaker sources.
In the assumed model, both speakers share the same ba-
sis filters. Discrete Cosine Transform transform is used to
make basis filters. The source priors are assumed to be a
mixture of gaussians, one for each band in the DCT do-
main. Such an assumption is made for low computational
burden and mathematical simplicity.

Further, the model assumes that the sources are inde-
pendent of each other and independent over time.

2.2 Signal Representation

The signals should be represented in the transform domain
using a transform that must be a) linear b) invertible and c)
representing independent features.

Choice of transform is DCT as there are several advan-
tages

1) Coefficients are real valued
2) Coefficients are robust to noise
3) No information loss in transformation from time do-

main to DCT domain
4) Has a decorrelating affect on coefficients.
Discrete Fourier Transform is not a good choice because

it has complex coefficients and the sources in the transform
domain are not independent.



2.3 Training of Priors and Separation

Training is done by transforming the speech samples to
DCT and creating histograms. The assumed model for
sources is mixture of gaussians (MoG). Estimation of source
coefficients is done using posterior mean estimator and the
estimation of mixing coefficients is done by maximum like-
lihood estimation. The Expectation-Maximization algo-
rithm is used.

3. SPARSE NON-NEGATIVE MATRIX
FACTORIZATION

The Non-negative matrix factorization (NMF) method is a
basic technique to source separation and two of the tech-
niques presented in this paper use the NMF as base.

Non-negative matrix factorization is a factorization as
shown below:

V = D ∗H (2)

Here, all three matrices are required to have non-negative
elements.

When applied to audio, a spectrogram V can be factored
into a matrix D of dictionary elements, which are different
patterns in frequency domain and a matrix H containing
weights which modify the dictionary elements over time.
The matrix H is also known as an ’encoding’.

Also, we assume that this spectrogram is a sum of source
spectrograms, each individually decomposable into dictio-
nary elements and encoding matrices. The full dictionary
is the concatenation of individual dictionaries and encod-
ing is also a concatenation.

3.1 Training and Separation

In the training step, the NMF learning algorithm is run on
audio samples from individual sources and dictionary el-
ements are learnt for each source. The algorithm is ini-
tialized with random matrices which change over several
iterations of the learning algorithm to produce an approxi-
mate factorization.

Concatenation of learned dictionaries is used for initial-
izing the NMF algorithm, and the encoding matrix is learnt
over iterations while the dictionary is kept constant. The
resulting encoding is a concatenation of encodings of esti-
mated source spectrograms.

Learning the non-negative factors of the given spectro-
gram matrix is essentially an optimization problem. Tradi-
tional NMF has several choices of the objective functions
to optimize. These are called divergence rules. The most
common divergence rules used are the Frobenius norm [2]
and Kullback - Liebler divergence rule [4]

Sparsity is enforced on matrix H so that V is separated
into sources if D is diverse enough. The Sparse NMF
learning algorithm modifies the Frobenius norm and adds
a sparseness criteria term into it.

Statistically, this optimization is equivalent to comput-
ing MAP estimate given a Gaussian LIkelihood function
and a one-sided exponential prior distribution over H.

4. SEPARATION USING EMPIRICAL MODE
DECOMPOSITION AND 2-D SPARSE NMF

Gao et al [5] introduce a unique way to source separation,
based on decomposing the mixture into a series of oscilla-
tory components called Intrinsic Mode Functions (IMFs),
which in turn are used by a variably tuned two-dimensional
sparse non-negative matrix factorization algorithm to achieve
separation. This method is an unsupervised separation method.

4.1 Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) is an analytical
tool used to analyze non-stationary non-linear time-series.
It decomposes a signal into simple oscillatory functions
called IMFs. An IMF is defined as a function that follows
two rules: (1) The number of extrema and the number of
zero-crossings must either be equal or differ at most by
one, and (2) at any point, the mean value of the envelope
defined by the local maxima and the envelope defined by
the local minima is zero. Instead of a rigid sinusoidal vari-
ation obtained through the DFT, an IMF can have time-
varying amplitude and time-varying frequency. The first
IMF of a signal contains the highest frequencies of oscilla-
tion. The subsequent IMFs contain oscillations of decreas-
ing frequencies.

IMFs are advantageous because each IMF consists of
a sub-band of frequencies where the degree of mixing is
reduced [5], and the contribution to the IMF from the orig-
inal sources is skewed. Therefore, the IMF spectrograms
are used as observations for the subsequent NMF based
decomposition.

4.2 General Algorithm

A general case of the sparse NMF, called the 2-Dimensional
Sparse NMF is used in this approach. Two dimensional
sparse NMF offers two advantages [9] over conventional
sparse NMF (1) The 2D-NMF considers the relative po-
sition of each spectrum thereby incorporating the tempo-
ral information, (2) the NMF does not model notes but
rather unique events only. Thus, if two notes are always
played simultaneously they will be modeled as one com-
ponent. On the other hand, a major disadvantage of 2D
sparse NMF is the lack of generalized criterion for sparse-
ness. This is overcome by introducing a sparseness term,
and so the modified approach is called variable-regularized
2D sparse NMF. This modification improves accuracy in
resolving speactral bases and temporal codes. This is cov-
ered in much detail in [9].

The overall algorithm is as follows: First, the mixture
signal is decomposed into IMFs using EMD, followed by
STFT of each IMF. These STFT representations are input
to the variable 2D sparse NMF algorithm which essentially
derives an overcomplete set of basis vectors. These bases
are inverse STFT transformed before their grouping into
sources. The grouping is done using the k-means cluster-
ing algorithm that uses the Kullback-Leibler divergence as
a proximity rule.



5. SEPARATION BY HILBERT SPECTRUM
SUBSPACE DECOMPOSITION

Hirose and Molla [4] introduce a method to separate sources
from a single channel signal using the Hilbert spectrum and
Independent Subspace Analysis (ISA). The Hilbert spec-
trum is used in place of the STFT for time-frequency rep-
resentation. This method does not require prior knowledge
of the sources and hence is an unsuperivsed method.

5.1 Signal Representation

The STFT-based time-frequency representation includes a
remarkable amount of cross-spectral terms due to the har-
monic assumption and the window-overlapping between
successive time frames [11]. Independent Subspace Anal-
ysis [8], which represents a signal as a sum of individual
source subspaces, is difficult to apply with an STFT rep-
resentation because of its cross-spectral nature. The au-
thors propose the Hilbert Spectrum (HS) as a TF repre-
sentation. The Hilbert Spectrum is the application of the
Hilbert-Huang Transform (HHT) to the IMFs obtained by
Empirical Mode Decomposition of (EMD) of the mixture
signal. The authors demonstrate the lack of cross-spectral
energy terms in the Hilbert Spectrum of a signal, which
leads to independent basis vectors to separate sources, and
claim that the Hilbert Spectrum is a better alternative to the
STFT.

5.2 General Algorithm

The general algorithm for this method is as follows: First,
the mixed signal is decomposed into IMFs using EMD.
Then, the Hibert Spectrum of the mixed signal is obtained
from the IMFs using the HHT. Next, the coherence (spec-
tral projection) vectors between the mixture and individual
IMF components are computed, followed by deriving spec-
tral independent bases from the set of coherence vectors by
applying PCA and ICA. Then, the bases are grouped into
source subsets using Kullback-Leibler divergence based
K-means clustering. Then, the mixture Hilbert spectrum is
projected on to the pseudoinverse nth subset of basis vec-
tors to get the corresponding subset of temporal bases. The
nth independent source subspace is derived as product of
the nth subset spectral independent bases and correspond-
ing temporal bases. Finally, time domain signals of each
source are obtained by applying the inverse transforma-
tions.

6. SOURCE SEPARATION USING BARK-SCALE
WAVELET PACKET DECOMPOSTION

Litvin and Cohen [6] present a unique input representa-
tion based on the Bark scale Wavelet Packet Decomposi-
tion (BS-WPD). The method is a supervised source sep-
aration technique, based on a statistical model of source
signals. The source models are trained separately on indi-
vidual source training data. Separation is done using MAP
estimation.

6.1 Signal Representation

The Wavelet Packet Decomposition is a type of the Dis-
crete Wavelet Transform (DWT), where the basic compo-
nent resulting from the decomposition is a tiny waveform
along with information about its position and frequency.
The Bark scale is a psychoacoustical scale that basically
enumerates indescernible frequency ranges.

For this approach, the wavelet packet decomposition is
modified to become shift-invariant using a special mapping
prior to DWT, so that the signal space achieves some re-
dundancy, thereby increasing the training data [6, 9]. The
wavelet decomposition uses the Bark scale critical bands
for filtering.

Compared with the STFT, wavelet packet analysis pro-
duces significantly less sub-bands, with approximately the
same frequency resolution in low frequencies. Frequency
resolution at higher frequency range is sacrificed, in ac-
cordance with human auditory system which also has a
coarser resolution in high frequency range. Reduction in
the number of sub-bands results in smaller dimension of
data that is used in training and separation stages [9].

6.2 Training and Separation

A simple additive mixture model is assumed. Posterior
Mean is used to estimate the sources in the wavelet do-
main. The sources are assumed to be a mixture of gaus-
sians (GMM). The training of the GMM models for each
source is performed using Expectation Maximization (EM)
algorithm and K-means algorithm.

7. COMPARISON AND PERFORMANCE OF
SOURCE SEPARATION METHODS

While it is generally difficult to compare all of the differ-
ent source separation methods with each other because the
authors seldom test the implementations of their methods
on standardized datasets, some authors explicitly compare
two or more competing methods with their own. A sum-
mary of such comparisons for the methods so far are given
below.

7.1 NMF and Bark-Scale Wavelet Packet
Decomposition

The authors [6] found that a combination of using Bark-
Scale Wavelet Packet Decomposition along with sparse NMF
technique and training on phoneme level audio signals re-
sults in huge computational savings over traditional NMF
and general speech signals from individual speakers.

7.2 ICA and Bark-Scale Wavelet Packet
Decomposition

The Bark-Scale Wavelet Packet Decomposition (BS-WPD)
approach [9] shows comparable performance with ICA,
proposed by Jang and Lee [10]. In the wavelet method, the
achieved separation is less in comparison to that of ICA.
However, the reconstructed signals also have minimal ar-
tifacts compared with ICA. On the other hand, ICA has



slightly better separation performance as well as audible
artifacts.

The BS-WPD approach works well if the sources are
better separated in frequency.

7.3 ICA method versus Hiilbert Spectrum based
method versus EMD and sparse 2D NMF based
method

The TIMIT (for speech) and RWC (for music) databases
were used for training and separation of the three models
by [5]. The Hibert Spectrum method does not require any
training. In general, the Undetermined ICA method per-
formed lowest, followed by Hilbert Spectrum method for
speech-speech as well as speech-music mixtures. The ICA
method performed slightly better than the Hilbert Spec-
trum method in the music-music mixtures. In all mixtures,
the EMD-Sparse 2D NMF performed the best.

7.4 NMF versus EMD and sparse 2D NMF based
method

The NMF methods are unable to determine the number of
sources and this number usually has to be provided manu-
ally. One the other hand, the EMD preprocessing has the
advantage that the number of derived IMFs exactly corre-
spond to the number of sources and thus does not require
manual input.

The EMD based 2D-NMF method and NMF method
with temporal comtinuity and spaseness criteria were tested
on the same datasets with the same types of mixtures (music-
music, speech-speech and music-speech) and the EMD based
method was found to be overall better in terms of the ISNR.

8. CONCLUSION

In this paper, I attempted to cover some state-of-the-art
methods for single channel source separation. All methods
exploit the underlying statistics of the data, while assuming
certain probabilistic models of the source signals. These
methods chose input representations that fit their model as-
sumptions for e.g. independence of TF bins criteria. The
individual methods achieve successful separation on data
used by respective authors. In some cases, the data used are
not naturally occuring signals or signals which one would
hope to fit the type that the method aims to decompose
well. This necessitates a standardized way to compare dif-
ferent methods. To overcome the difficulty of objective
comparison, one standard dataset - SISEC - has been used
for evaluating results.

Another motivating problem in this area is that a truly
general source separation algorithm, one which could be
applied to any kind of data, is yet to be developed. One
approach that comes close is by Ozerov et al [12] that cre-
ates a unified approach tothe problem by consolidating all
of the known statistical techniques - NMF, GMM, HMM
- into one, and also creating a general way to accept prior
information about sources. It employs a highly general-
ized expectation-maximization algorithm, based on MAP

estimation, for training and separation stages. By its inclu-
sive nature, this algorithm performs well on most types of
data [12].

One key elment missing from these approaches is the
use of psychoacoustical cues. As indicated in the introduc-
tion section, such methods using human auditory informa-
tion are separately studied under the label CASA - Com-
putational Auditory Scene Analysis. I believe that incor-
porating psychoacoustical information into the statistical
approaches, along with improvements in signal processing
techniques, would greatly improve the quality of separa-
tion in the future.
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