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ABSTRACT 

Multi-pitch analysis is an important subjects in audio sig-
nal processing, while at the same time it is also a very chal-
lenging issue. In this paper, we are mainly focusing on the 
multi-pitch streaming part, while in order to perform the 
streaming process, we need first estimate the pitch values 
in individual time frame. Thus a multi-pitch estimation 
process is also provided here. Recently both multi-pitch 
estimation and multi-pitch streaming are receiving many 
research interests and several advances in these two areas 
were made.  

In this paper we will describe two categories of multi-
pitch estimation or MPE methods. And then we are going 
to introduce the basic concept of clustering as well as sev-
eral clustering algorithms based on this concept. For each 
clustering algorithm presented, a recently proposed multi-
pitch streaming method using this clustering algorithm 
will be detailed discussed. Experimental results and some 
defects   of these methods will also be provided. 

1. INTRODUCTION 

When we are sitting in a noisy bar and talking to some of 
our friends, we can usually keep track of our conversation 
even though the friends’ voices may partially overlap the 
voices of other speakers. This is called cocktail party prob-
lem [1]. A similar problem is when we listen to a sym-
phony or other music with overlapping harmonic compo-
nents emitted by different instruments, we can easily no-
tice and track the sounds from different instruments even 
without musical training.  

In [1], Simon Haykin and Zhe Chen categorized the so-
lution of the problem into three underlying neural pro-
cesses: Analysis, Recognition and Synthesis. The analysis 
part, the fundamental process for the entire solution, in-
volves segmentation of incoming auditory signal to indi-
vidual channels or streams. And a major cue for doing so 

is their pitch [2] despite other cues such as harmonic rela-
tionships among spectral components (harmonicity), tem-
poral onsets/offsets, timbre, and patterns of amplitude 
modulation [3][4]. Thus, to understand how music is per-
ceived, we need to understand how the pitch of a sound is 
determined. The estimation of pitch values of all sources 
at each individual time frame is a process known as the 
multi-pitch estimation or MPE. Although the detection of 
pitches from a single source is a solved problem, multi-
pitch estimation are still open problems.  

Once the pitches of every time frame are detected, we 
need to stream estimated pitches into a single pitch trajec-
tory. To perform this, timbre information and some clus-
tering algorithms are required. And this process is called 
multi-pitch streaming by [5].    

In this paper, we will focus on the multi-pitch stream-
ing process. This paper will be divided into 2 major sec-
tions: section 2 will describe the current methods of multi-
pitch estimation and section 3 will describe the concept of 
clustering and some clustering algorithms can be used in 
multi-pitch streaming. 

2. MULTI-PITCH ESTIMATION 

Before the introduction of multi-pitch estimation, I would 
like to go through the well addressed issue: mono-pitch es-
timation. There are many approaches for mono-pitch esti-
mation. For example, L. Rabiner proposed a method of 
performing autocorrelation analysis to detect the pitch [6], 
A. De Cheveigné and H. Kawahara proposed a well-
known YIN algorithm for pitch detection [7]. Both these 
methods try to detect the pitch by retrieving a periodic pat-
tern in a waveform. Other approaches beside these two uti-
lizing the time domain properties are [8][9][10], they man-
aged to find the pitch by utilizing the property that har-
monics are at integer multiples of pitch. [11] and [12] also 
proposed some methods by combining both spectral and 
temporal cues. Another kind of approach is the one pro-
posed by D. G. Childers who uses cepstrum information 
for pitch detection [13].  

Although we do have so many approaches in mono-
pitch estimation, the multi-pitch estimation still remains an 
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open area for further study. The results of current multi-
pitch estimation is not as satisfying as that of mono-pitch 
estimation. However, the multi-pitch scenario occurs reg-
ularly in music signals, perhaps even more frequently than 
the single-pitch case, and often also in speech processing.  

2.1 Autocorrelation Function (ACF) 

Unlike the mono-pitch estimation using ACF, the multi-
pitch estimation using ACF faces several problems. For 
example, one or two musical instruments or voice sources 
may have lower signal energy than others, when we use 
the autocorrelation analysis for the mono-pitch estimation 
here, the fundamental frequency of the source with lower 
energy may not be found and the harmonics of sources 
with higher energy may be detected as a fundamental fre-
quency.  

To solve this problem, Ray Meddis and Michael J. 
Hewitt proposed a method [14]. The stimulus first pass a 
bandpass digital-filter system, then autocorrelation analy-
sis is performed on each channel. After that cross-channel 
summation of the ACFs is performed to form a pooled 
ACF and we can have a pitch at period 𝑝𝑝1 by finding the 
peak in the pooled ACF.  Then all the channels which do 
not have a peak at 𝑝𝑝1 in their own ACF form a new (re-
duced) pooled ACF and we can find a new pitch in this 
new pooled ACF. Repeat this process until we will have 
multiple pitches.  

Instead of finding multiple peaks from a single pooled 
ACF, R. Meddis and M.J. Hewitt’s method tries to find the 
single peak from multiple pooled ACF and each new 
formed pooled ACF eliminates the frequency channel that 
contributes a pitch in the previous step. By doing so, even 
the pitch from sources which have lower signal energy can 
be detected. However, this method may still have a prob-
lem: when two pitch are really close in frequency domain, 
one of them may not be detected.  

2.2 Mathematic Model 

M. Davy and S. Godsill in 2006 first proposed such a math-
ematic model in their paper [15]. And in 2009 M.G. Chris-
tensen proposed a slightly modified mathematic model 
[16]. Here, in this paper, we will introduce the model pro-
vided by M.G. Christensen.  

Consider a signal consisting of several, say K, sets of 
harmonics (hereafter referred to as sources) with funda-
mental frequencies 𝜔𝜔𝑘𝑘, for k = 1, . . . , K, that is corrupted 
by an additive white complex circularly symmetric Gauss-
ian noise, 𝜔𝜔 (n), having variance 𝜎𝜎2, for n = 0, . . . , N − 1, 
i.e., 

𝑥𝑥(𝑛𝑛) = ��𝑎𝑎𝑘𝑘,𝑙𝑙𝑒𝑒𝑗𝑗𝜔𝜔𝑘𝑘𝑙𝑙𝑙𝑙 + 𝜔𝜔(𝑛𝑛)
𝐿𝐿

𝑙𝑙=1

𝐾𝐾

𝑘𝑘=1

         (1) 

where 𝑎𝑎𝑘𝑘,𝑙𝑙 = 𝐴𝐴𝑘𝑘,𝑙𝑙𝑒𝑒𝑗𝑗𝜙𝜙𝑘𝑘,𝑙𝑙 , with 𝐴𝐴𝑘𝑘,𝑙𝑙 > 0 and 𝜙𝜙𝑘𝑘,𝑙𝑙  being the 
amplitude and the phase of the l’th harmonic of the k’th 
source, respectively. The problem is then to estimate the 
fundamental frequencies {𝜔𝜔𝑘𝑘}, or the pitches, from a set 
of N measured samples, 𝑥𝑥(𝑛𝑛). It seems impossible to ob-
tain the fundamental frequencies {𝜔𝜔𝑘𝑘} and all other pa-
rameters only from the observed 𝑥𝑥(𝑛𝑛). While, if we have 
some well-founded principles from statistical signal pro-
cessing and use some estimators proposed by [16], we can 
find the estimates of fundamental frequencies {𝜔𝜔𝑘𝑘}. And 
once given the fundamental frequencies {𝜔𝜔𝑘𝑘}, the ampli-
tudes and phases can easily be found using one of the esti-
mators proposed in [17]. 

In paper [16], M.G. Christensen presented an approxi-
mate nonlinear least-squares (NLS) method, a MUltiple 
SIgnal Classification (MUSIC) based method as well as a 
Capon-based method. According to the author, these three 
methods have the same simple form which is list below: 

{𝜔𝜔�𝑘𝑘} = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥
{𝜔𝜔𝑘𝑘}

�𝐽𝐽(𝜔𝜔𝑘𝑘)                         (2)
𝐾𝐾

𝑘𝑘=1

 

where the function J (·) depends only on the source k. This 
means that an estimate of the set of fundamental frequen-
cies can be obtained by evaluating a cost function 𝐽𝐽(𝜔𝜔𝑘𝑘) 
for a coarse grid of values and then picking the K highest 
peaks. The difference between these three methods is the 
different definition of the cost function J (·). For more on 
these detailed definition and the results comparison of 
these three methods, I hereby refer the interested reader to 
[16] and the references therein.                    

3. MULTI-PITCH STREAMING 

Once we know the pitches of each time frame, we need to 
stream these pitches into a single pitch trajectory for each 
source. Pitches in this trajectory share “similar” timbre fea-
ture, in some angle a stream is in fact a cluster so stream 
segregation can be modelled as a clustering problem.  

This streaming part may be the most difficult and the 
most important part of the source separation. It is important 
since without this process, the pitch itself is useless. Only 
with these estimated pitches, it is clearly impossible to per-
form the recognition and synthesis part proposed by [1]; 
And it is difficult since recent method usually do not have 
a satisfying streaming results. We really need some well-
designed methods to perform the multi-pitch streaming, 
and maybe some clustering algorithm ideas will help us 
doing so.  



3.1 Concept of Clustering  

Everitt [19] documents some of the following definitions 
of a cluster: 
1. “A cluster is a set of entities which are alike, and en-

tities from different clusters are not alike.” 
2. “A cluster is an aggregation of points in the test space 

such that the distance between any two points in the 
cluster is less than the distance between any point in 
the cluster and any point not in it.” 

3. “Clusters may be described as connected regions of 
a multi-dimensional space containing a relatively 
high density of points, separated from other such re-
gions by a region containing a relatively low density 
of points.” 

Clustering is sometimes referred to as unsupervised clas-
sification [18] and it can be further described as follow: 
If: 

(1)𝑈𝑈 = {𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛} 
(2)𝐶𝐶𝑡𝑡 ⊆ 𝑈𝑈, 𝑡𝑡 = 1,2, … , 𝑘𝑘,𝐶𝐶𝑡𝑡 = {𝑝𝑝𝑡𝑡1 ,𝑝𝑝𝑡𝑡2 , … ,𝑝𝑝𝑡𝑡𝑤𝑤}  
(3)𝑝𝑝𝑎𝑎𝑝𝑝𝑥𝑥𝑝𝑝𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝 (𝑝𝑝𝑚𝑚𝑠𝑠 ,𝑝𝑝𝑡𝑡𝑟𝑟) 

Then: 
(1)⋃ 𝐶𝐶𝑡𝑡 = 𝑈𝑈.𝑘𝑘

𝑡𝑡=1   
(2)∀ 𝐶𝐶𝑚𝑚,𝐶𝐶𝑟𝑟 ⊆ 𝑈𝑈, 𝑝𝑝𝑖𝑖 𝐶𝐶𝑚𝑚 ≠ 𝐶𝐶𝑟𝑟 , 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝐶𝐶𝑚𝑚 ∩  𝐶𝐶𝑟𝑟 =
∅ (𝑖𝑖𝑝𝑝𝑎𝑎 𝑒𝑒𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑎𝑎𝑝𝑝𝑛𝑛𝑎𝑎 𝑝𝑝𝑛𝑛𝑒𝑒𝑝𝑝)  
(3)𝑀𝑀𝑀𝑀𝑀𝑀∀𝑝𝑝𝑚𝑚𝑢𝑢∈𝐶𝐶𝑚𝑚,∀𝑝𝑝𝑟𝑟𝑣𝑣∈𝐶𝐶𝑟𝑟,∀𝐶𝐶𝑚𝑚,𝐶𝐶𝑟𝑟⊆𝑈𝑈&𝐶𝐶𝑚𝑚≠𝐶𝐶𝑟𝑟  

(𝑝𝑝𝑎𝑎𝑝𝑝𝑥𝑥𝑝𝑝𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝�𝑝𝑝𝑚𝑚𝑢𝑢 ,𝑝𝑝𝑟𝑟𝑣𝑣�)  > 
𝑀𝑀𝐴𝐴𝑀𝑀∀𝑝𝑝𝑚𝑚𝑥𝑥 ,𝑝𝑝𝑚𝑚𝑦𝑦∈𝐶𝐶𝑚𝑚,∀𝐶𝐶𝑚𝑚⊆𝑈𝑈 (𝑝𝑝𝑎𝑎𝑝𝑝𝑥𝑥𝑝𝑝𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝(𝑝𝑝𝑚𝑚𝑥𝑥 ,𝑝𝑝𝑚𝑚𝑦𝑦))  

U is the set of all the data points, pi is the 𝑝𝑝𝑡𝑡ℎ point and 
i={1,2,…,n}; Then Ct describes the 𝑡𝑡𝑡𝑡ℎ cluster and there 
are overall k clusters, 𝑝𝑝𝑡𝑡𝑤𝑤means the 𝑤𝑤𝑡𝑡ℎ  point in the 𝑡𝑡𝑡𝑡ℎ  
cluster; Proximity depends on the algorithm used here. In 
most cases, it is a kind of distance between 𝑝𝑝𝑚𝑚𝑠𝑠and 𝑝𝑝𝑖𝑖𝑟𝑟 . 
The conclusion part reveals three major things. First, the 
union of all the clusters is the set U, which means every 
point in set U is clustered. Second, if two clusters are not 
the same, the intersection of these two clusters is an empty 
set. In other words, each point in the set U is only bet clus-
tered to one cluster. Then, the last one says that the prox-
imity of any two points in any two different clusters must 
be larger than proximity of any two points in the same clus-
ter. This can also be explained as: the minimum proximity 
of two points belong to two different clusters is larger than 
the maximum proximity of two points belong to the same 
cluster.  

3.2 Hierarchical Clustering Algorithm 

A hierarchical clustering is often displayed graphically us-
ing a tree-like diagram called a dendrogram, which dis- 
plays both the cluster-subcluster relationships and the or- 
der in which the clusters were merged (agglomerative 

view) or split (divisive view). Based on whether the cluster 
is merged or split, we can category the hierarchical clus-
tering algorithm into two major part: agglomerative hier-
archical clustering technique and divisive hierarchical 
clustering technique. 
Agglomerative: Start with the points as individual clus-

ters and, at each step, merge the closest pair of 
clusters. This requires defining a notion of cluster 
proximity. 

 Divisive: Start with one, all-inclusive cluster and, at 
each step, split a cluster until only singleton clusters 
of individual points remain. In this case, we need to 
decide which cluster to split at each step and how to 
do the splitting. 

According to [20], hierarchical clustering algorithm has 
four advantanges: 1) does not require the number of clus-
ters to be known in advance, 2) computes a complete hier-
archy of clusters, 3) good result visualizations are inte-
grated into the methods, 4) a “flat” partition can be derived 
afterwards (e.g. via a cut through the dendrogram). Some 
examples of hierarchical clustering algorithms are: Bal-
anced Iterative Reducing and Clustering using Hierarchies- 
BIRCH [21], Clustering Using REpresentatives- CURE 
[22] and CHAMELEON [23]. For more information on 
these clustering algorithms, please go through paper [20] 
and the references therein.  

In 2003, W.M. Szeto and M.H. Wong proposed an ag-
glomerative hierarchical clustering method for multi-pitch 
streaming [24]. In their algorithm, they first assume the 
pitch, the starting time and the ending time of each musical 
note are obtained. And a vector combines these three are 
called an event. The starting time and the ending time are 
in the unit of seconds and the pitch is in the unit of MIDI 
number. Then they defined the inter-event distance 
(EDIST) as: 

𝐸𝐸𝐸𝐸𝑀𝑀𝐸𝐸𝐸𝐸(𝑒𝑒1, 𝑒𝑒2) = ��(𝛼𝛼𝛼𝛼)2 + (𝛽𝛽(𝑝𝑝1 − 𝑝𝑝2))2 𝑝𝑝𝑖𝑖 𝑒𝑒1 ∦ 𝑒𝑒2
∞                                           𝑝𝑝𝑖𝑖 𝑒𝑒1 ∥ 𝑒𝑒2

  

(3) 
where 𝛼𝛼 is the time weighting factor and the 𝛽𝛽 is the pitch 
weighting factor. 𝑒𝑒1 ∦ 𝑒𝑒2  means event 𝑒𝑒1 and 𝑒𝑒2  are not 
overlapping in time domain while 𝑒𝑒1 ∥ 𝑒𝑒2 means these two 
events are overlapping in time domain. And d is the ending 
time of event 1 minus the staring time of event 2. For ex-
ample we can have the distance matrix in table 1 of all the 
five event examples shown in figure 1. Their algorithm is 
listed on the next page. 

In algorithm 1, 𝐶𝐶𝑖𝑖 is the 𝑝𝑝𝑡𝑡ℎ cluster, a cluster can have 
one or more events and is also a vector with three parame-
ters: staring time, ending time and a set of clustered events. 
Unlike the event, the starting time of cluster is defined as 
the first starting time of all its events and the ending time is  



the last ending time of all its events. By doing so, we can 
easily judge whether two clusters are overlapping together.  
The inter-cluster distance CDIST here is defined as: 

𝐶𝐶𝐸𝐸𝑀𝑀𝐸𝐸𝐸𝐸(𝐶𝐶1,𝐶𝐶2) = �
𝑚𝑚𝑝𝑝𝑛𝑛𝑒𝑒𝑖𝑖∈𝐶𝐶1,𝑒𝑒𝑗𝑗∈𝐶𝐶2�𝐸𝐸𝐸𝐸𝑀𝑀𝐸𝐸𝐸𝐸(𝑒𝑒1, 𝑒𝑒2)�𝑝𝑝𝑖𝑖𝐶𝐶1 ∦ 𝐶𝐶2
∞                                                    𝑝𝑝𝑖𝑖 𝐶𝐶1 ∥ 𝐶𝐶2

 

 (4) 
The idea of this algorithm is to assign each event to a clus-
ter for the first step, then find the cluster pairs have the 
minimum distance. Then these two clusters are merged 
into a new cluster and a new cluster pair with minimum 
distance within the new clusters set will be found. Repeat 
this process we will end up with a hierarchy structure. 
Once given the number of output clusters, the clustering 
result will be obtained. 

Although the author claims the experiment results 
tested on Johann Sebastian Bach’s two-part Invention No. 
1 collected from [25] and Chopin’s Prelude No. 4 in E 
minor have very low error rates (0 and 0.025 respectively), 
this method suffers from one crucial problem: very large 
number of operations. The complexity of this algorithm is 
𝑂𝑂(𝑀𝑀3) , this is something intolerable. 

3.3 Model Based Algorithm 

There’s another way to deal with clustering problems: 
a model-based approach, which consists in using certain 
models for clusters and attempting to optimize the fit be-
tween the data and the model. Mentioned in [26], each 
cluster can be mathematically represented by a parametric 
distribution, like a Gaussian (continuous) or a Poisson 
(discrete). The entire data set is therefore modelled by 
a mixture of these distributions. Such an individual distri-
bution used to model a specific cluster is often referred to 
as a component distribution. 

A mixture model with high likelihood tends to have the 
two traits: 1) component distributions have high “peaks”  

Figure 1. Five events example [24] 

Table 1. The inter-event distances of events in figure 1 
(𝛼𝛼=1; 𝛽𝛽=1)[24] 

(data in one cluster are tight), 2) the mixture model “co-
vers” the data well (dominant patterns in the data are cap-
tured by component distributions). Advantages of model-
based clustering are: 1) well-studied statistical inference 
techniques available, 2) flexibility in choosing the compo-
nent distribution, 3) for each cluster a density estimation is 
obtained, 4) a “soft” classification is available. 

In 2005, H. Kameoka, T. Nishimoto, and S. Sagayama 
proposed a Gaussian model algorithm in multi-pitch esti-
mation [27].  In their algorithm, they use Gaussian kernel 
model to represent the harmonic structure of a certain fun-
damental frequency and the power envelop over time. As-
suming each frequency component distribution of an esti-
mated fundamental log-frequency 𝜇𝜇𝑘𝑘 can be approximated 
by a Gaussian, a single harmonic structure can be modeled 
with a weighted sum of Gaussian kernels described as: 

ℎ𝑘𝑘(𝑥𝑥) = �
𝑎𝑎𝑙𝑙𝑘𝑘

�2𝜋𝜋𝜎𝜎𝑘𝑘2

𝑁𝑁

𝑙𝑙=1

𝑒𝑒𝑥𝑥𝑝𝑝 �−
{𝑥𝑥 − (𝜇𝜇𝑘𝑘 + log𝑛𝑛)}2

2𝜎𝜎𝑘𝑘2
� 

(5) 
Where x is log-frequency, n and N are the 𝑛𝑛𝑡𝑡ℎ harmonic 
and total number of harmonics, k is the index of cluster and 
each weight parameter 𝑎𝑎𝑙𝑙𝑘𝑘(∑ 𝑎𝑎𝑙𝑙𝑘𝑘𝑁𝑁

𝑙𝑙=1 = 1) is exactly related  

 

Algorithm 1  Adapted single-link clustering algorithm 

1:  Choose 𝕽𝕽𝟎𝟎 ← {𝑪𝑪𝒊𝒊 = {𝒆𝒆𝒊𝒊}, 𝒊𝒊 = 𝟏𝟏,𝟐𝟐, … ,𝑵𝑵} as the 
initial clustering.  

2:  𝒕𝒕 ← 𝟎𝟎 
3:  repeat 
4:          𝒕𝒕 ← 𝒕𝒕 + 𝟏𝟏 
5:         Among all possible pairs of clusters (𝑪𝑪𝒓𝒓, 𝑪𝑪𝒔𝒔) 

in 𝕽𝕽𝒕𝒕−𝟏𝟏 , find 𝑪𝑪𝒊𝒊 ,  𝑪𝑪𝒋𝒋 such that 
CDIST(𝑪𝑪𝒊𝒊, 𝑪𝑪𝒋𝒋)=𝒎𝒎𝒊𝒊𝒎𝒎𝒓𝒓≠𝒔𝒔𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝑪𝑪𝒓𝒓, 𝑪𝑪𝒔𝒔) 

6:          if  CDIST(𝑪𝑪𝒊𝒊, 𝑪𝑪𝒋𝒋)=∞ then 
7:                    break 
8:          Merge 𝑪𝑪𝒊𝒊, 𝑪𝑪𝒋𝒋 into a single cluster called 𝑪𝑪𝒒𝒒and 

form 𝕽𝕽𝒕𝒕 ← (𝕽𝕽𝒕𝒕−𝟏𝟏 − {𝑪𝑪𝒊𝒊, 𝑪𝑪𝒋𝒋}) ∪ 𝑪𝑪𝒒𝒒 
9:  until 𝕽𝕽𝑵𝑵−𝟏𝟏 clustering is formed, that is, all events 

lie in the same cluster. 

 𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐 𝒆𝒆𝟑𝟑 𝒆𝒆𝟒𝟒 𝒆𝒆𝟓𝟓 
𝒆𝒆𝟏𝟏 - 4.00 ∞ ∞ 5.10 
𝒆𝒆𝟐𝟐 4.00 - 3.35 ∞ ∞ 
𝒆𝒆𝟑𝟑 ∞ 3.35 - 1.12 3.20 
𝒆𝒆𝟒𝟒 ∞ ∞ 1.12 - 3.00 
𝒆𝒆𝟓𝟓 5.10 ∞ 3.20 3.00 - 



Figure 2. Parametric audio stream model  

Figure 3. Gaussian kernel harmonic structure model 

Figure 4. Gaussian kernel power envelope model 

to the spectral components. In building the power envelop 
model, the author sets a specific feature: the standard de-
viation of each Gaussian and the interval of adjacent 
Gaussians are expressed with a same variable 𝜙𝜙𝑘𝑘 . Thus 
𝑎𝑎𝑘𝑘(𝑡𝑡) is given as: 

𝑎𝑎𝑘𝑘(𝑡𝑡) = �
𝐶𝐶𝑦𝑦𝑘𝑘

�2𝜋𝜋𝜙𝜙𝑘𝑘2
exp [−

{𝑡𝑡 − (𝑂𝑂𝑘𝑘 + 𝑝𝑝𝜙𝜙𝑘𝑘)}2

2𝜙𝜙𝑘𝑘2
]

𝑌𝑌−1

𝑦𝑦=0

 

(6) 
where y and Y are the index and the number of the Gauss-
ian kernels, 𝑂𝑂𝑘𝑘 is the simply center of the forefront Gauss-
ian and each of the Gaussian kernel is weighted with 
𝑒𝑒𝑦𝑦𝑘𝑘(∑ 𝑒𝑒𝑦𝑦𝑘𝑘𝑌𝑌−1

𝑦𝑦=1 = 1). The harmonic structure model ℎ𝑘𝑘(𝑥𝑥) of 
fundamental log-frequency 𝜇𝜇𝑘𝑘  of 𝑘𝑘𝑡𝑡ℎ  audio stream is 
shown in figure 3, and the power envelop curve function 
𝑎𝑎𝑘𝑘(𝑡𝑡) is shown in figure 4. Then, the 𝑘𝑘𝑡𝑡ℎ  audio stream 
model 𝑝𝑝(𝑥𝑥, 𝑡𝑡|Θ𝑘𝑘) is expressed as a multiplication of the 2 
functions and power 𝜔𝜔𝑘𝑘: 

𝑝𝑝(𝑥𝑥, 𝑡𝑡|Θ𝑘𝑘) = 𝜔𝜔𝑘𝑘ℎ𝑘𝑘(𝑥𝑥)𝑎𝑎𝑘𝑘(𝑡𝑡)                   (7) 

Where ∫ ℎ𝑘𝑘(𝑥𝑥)𝛼𝛼𝑥𝑥Ω1
Ω0

= ∫ 𝑎𝑎𝑘𝑘(𝑡𝑡)𝛼𝛼𝑡𝑡 = 1𝑇𝑇1
𝑇𝑇0

, different stream 

may have different power 𝜔𝜔𝑘𝑘, while the summation of all 
the power of each stream is a constant F, thus ∑ 𝜔𝜔𝑘𝑘

𝐾𝐾
𝑘𝑘=1 =

𝐹𝐹. In equation (6), t and K are time (frame) and the total 

number of clusters, 𝐸𝐸0 , 𝐸𝐸1  and Ω0 , Ω1  are the lower and 
higher bounds of time (frame) and log-frequency ranges, 
respectively. The 𝑘𝑘𝑡𝑡ℎ audio stream model is shown in fig-
ure 2.  

Then I would like to introduce the objective function 
which is well designed by the author. The objective func-
tion for this clustering is given as: 

�� � (𝑝𝑝(𝑘𝑘|𝑥𝑥, 𝑡𝑡,Θ)𝑖𝑖(𝑥𝑥, 𝑡𝑡)) × 𝐸𝐸(𝑥𝑥, 𝑡𝑡|Θ𝑘𝑘)𝛼𝛼𝑥𝑥𝛼𝛼𝑡𝑡
Ω1

Ω2

𝑇𝑇1

𝑇𝑇2

𝐾𝐾

𝑘𝑘=1

 

(8) 
Where 𝑖𝑖(𝑥𝑥, 𝑡𝑡)  is spectral density of wavelet transform 
spectrum. 𝑝𝑝(𝑘𝑘|𝑥𝑥, 𝑡𝑡,Θ is a membership probability of 𝑘𝑘𝑡𝑡ℎ 
cluster at the coordinates (x,t), depending on every model 
parameter Θ . Thus 𝑝𝑝(𝑘𝑘|𝑥𝑥, 𝑡𝑡,Θ)𝑖𝑖(𝑥𝑥, 𝑡𝑡)  can be viewed as 
the spectral density of segregated audio stream. 𝐸𝐸(𝑥𝑥, 𝑡𝑡|Θ𝑘𝑘) 
is related to 𝑝𝑝(𝑥𝑥, 𝑡𝑡|Θ𝑘𝑘). I mentioned this objective function 
is well designed since the objective function will have the 
maximum value when 𝑝𝑝(𝑘𝑘|𝑥𝑥, 𝑡𝑡,Θ)𝑖𝑖(𝑥𝑥, 𝑡𝑡) and 𝑝𝑝(𝑥𝑥, 𝑡𝑡|Θ𝑘𝑘) 
are close, which can be viewed as the observed distribution 
is close to the Gaussian kernel model distribution.  

Therefore, if we have a prior knowledge or an expecta-
tion of how spectral and power envelops would shape like 
(then we can have the 𝑘𝑘𝑡𝑡ℎ audio stream model), we would 
obtain the clustering result by maximizing the objective 
function. This is basically the main idea of this algorithm. 
The author uses EM algorithm to update the parameter Θ 
of these models. Detailed process of EM algorithm and the 
use of prior distribution to prevent excessive deviation can 
be find in [27] and its references. 

This algorithm obtained extremely high accuracy of 
92.1% and 86.2% on two pieces of real music performance 
data excerpted from RWC music data. However, since the 
experiment was done with very limited test data and the 
pitches of the testing data are unlikely to change a lot in 
time domain, we cannot guarantee this method works well 
on all sort of musical data.   

4. CONCLUSION  

This paper has given two applications of clustering algo-
rithm in multi-pitch streaming. Based on the results of 
these two methods, some future work including reducing 
the computational complexity for the hierarchical stream-
ing algorithm and testing the Gaussian kernel model 
method on a greater set of data is required.  In the future 
research of multi-pitch streaming, finding new clustering 
algorithm or applying other existing algorithms to the area 
of multi-pitch streaming might be reasonable approach in 
order to have better streaming results.    
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