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ABSTRACT 

Music alignment is the association of events in a musical 
score with points in the time frames of an audio signal. 
So it is also called audio-score alignment. Until now, 
most polyphonic audio-score alignment methods are of-
fline algorithms, and alignment accuracy drops signifi-
cantly when using online algorithms. But most applica-
tions based on alignment need real-time results, such as 
Automatically Accompaniment System or Music Tutor. 
So we aim at improving the alignment result of an online 
alignment algorithm. 
    In general online methods, a polyphonic music audio is 
segmented into time frames and they are fed to the score 
follower in sequence. Then the algorithm outputs a score 
position for each frame right after it is processed. In this 
paper, we find that not all audio frames give us the same 
level of reliability within the evolution of one note, espe-
cially in staccato performing or decay of piano sound 
when real sound will last shorter compared with our ex-
pectation from the score. Then the online follower in pre-
vious algorithm will get lost.  
    So in this paper, we propose to utilize note onsets in-
formation to find the “faithful” frames as observation to 
do the alignment. A weighting function is introduced to 
assign different weights to the frames as the measure of 
their reliability. The function value is dropping within 
evolution of one note and score position tends to move 
forward evenly excluding observations from audio, while 
when a new onset is detected and weight returns high, it 
will be dragged to right position quickly due to high trust 
of observation. Experiments show that proposed im-
provements can get better alignment results than previous 
online methods, especially in piano music. 

1. INTRODUCTION 

Generally, there are primarily two kinds of music data: 
sampled audio files, such as those found on compact 
discs, and symbolic music representations, which essen-
tially specify notes with pitch, duration, tempo and so on. 
MIDI is widely used as symbolic music representations 
for computers since it concludes all the information on a 
sheet score with similar size as a text. So we can say 
MIDI is the score for computers. For human, there are 
thousands of different performances of one music piece 
based on the performers’ styles, and musician can always 
find the position in score while music playing. To draw 

an analogy, music alignment is aim to give computer su-
ch an ability to find the position in MIDI from an audio 
recording. It is related to the problem of synchronization 
between performers and computers 

There are two different versions of the problem, usual-
ly called “offline” and “online”. Offline alignment uses 
the complete performance to estimate the correspondence 
between audio data and symbolic score. Thus, the offline 
problem allows one to “look into the future” while estab-
lishing the correspondence. Offline algorithms can be 
used to synchronize multiple modalities (video, audio, 
score, etc.) of music to build a digital library. But the ap-
plication is limited. 

Online alignment, sometimes called Score Following, 
process audio data in real-time as the signal is acquired, 
thus no “look ahead” is possible. The goal of score fol-
lowing is to identify the musical events described in the 
score with high accuracy and low latency. While offline 
algorithms can only be used in offline applications, on-
line algorithms can be used in both offline and online 
scenarios, and even be made to work in real time if they 
are fast enough. For example, one can generate a flexible 
musical accompaniment that follows a live soloist. Or 
one can devise a music tutor system for beginning leaners. 
Other applications include real-time score-based audio 
enhancement e.g. pitch correction, and automatic page 
turners. [1] 
    Most existing polyphonic audio-score alignment meth-
ods use Dynamic Time Warping (DTW) [2]–[4], a HMM 
[5], [6], a hybrid graphical model [7] or a conditional 
random field model [8]. Although these techniques 
achieve good results, they are offline algorithms, that is, 
they need the whole audio performance to do the align-
ment. 

Dannenberg [9] and Vercoe [10] propose the first two 
real-time score followers, but both work for MIDI per-
formance instead of audio. There are some real-time or 
online audio-score alignment methods [11]–[14]. Howev-
er, these methods are for monophonic (one note at a time) 
audio performances. Two of these systems ([13], [14]) 
also require training of the system on prior performances 
of each specific piece before alignment can be performed 
for a new performance of the piece. This limits the ap-
plicability of these approaches to pieces with preexisting 
aligned audio performances.  

Cont [15] proposes a hierarchical HMM approach to 
follow piano performances, where the observation likeli-
hood is calculated by comparing the pitches at the hy-
pothesized score position and pitches transcribed by 
Nonnegative Matrix Factorization (NMF) with fixed 



  
 

spectral bases. A spectral basis is learned for each pitch 
of the specific piano beforehand. This method might have 
difficulties in generalizing to multi-instrument polyphon-
ic audio, as the timbre variation and tuning issues in-
volved make it difficult to learn a general basis for each 
pitch. 
    [16] addressed the online audio-score alignment prob-
lem with a continuous state HMM process to model the 
audio performance, which allows an arbitrary precision of 
the alignment. And an observation model with multi-
pitch information provides a more accurate connection 
between audio and score than traditional representations 
such as chroma features. This score follower performs 
better than other current online algorithms for most multi-
instrument polyphonic music, but will get lost when the 
evolution of notes is not steady (decay of piano notes, 
staccato notes, echo, etc.).  

    In this paper, we will use the same model structure 
in [16] and utilize onset information to make the align-
ment more accurate and robust. We find that for most of 
music pieces, offset time of performed notes does not 
strictly follow the score. They are often earlier than their 
expected time. The reliability decreases when time goes 
further from onsets, due to the uncertainty of offset time. 
Since audio onset time usually strictly follows the score, 
the frames right after onsets are reliable. So we propose 
to impose a weighting function on audio frames to find 
out reliable audio frames by onset detection. More relia-
ble frames will have stronger influence through the ob-
servation model so we will get a faithful observation 
model. Furthermore, the onset information can improve 
the alignment accuracy. Only using the multi-pitch in-
formation, the first audio frame in the sustain part of a 
note can be aligned to any position of the corresponding 
note with no difference. With onsets detected, we can re-
quire the first frame to be always aligned to the onset of a 
score note. 
    The remainder of this paper is arranged as follows: 
Section 2 reviews the ideas in [16], which is also used in 
this paper. Section 3 describes how to utilize onset infor-
mation to improve the alignment. Experimental results 
are presented in Section 4 and the paper is concluded in 
Section 5. 

2. MODEL STRUCTURE 

In this paper we use the same model structure in [16]. A 
process model represents the score position and tempo. 
This model describes how the states transition and makes 
the position only move forward based on the position and 
tempo in last state. Then an observation model evaluates 
how likely the current audio frame is to contain the 
pitches at a hypothesized score position. The inference of 
the score position and tempo of the current frame is 
achieved by particle filtering. It is a way to do the infer-
ence in an online fashion. 
    Our model structure is illustrated in Figure 1. We pro-
cess the audio frames in sequence. The n-th frame is as-
sociated with a 2-dimensional hidden state vector 
sn = (xn ,vn )

T , where xn is its score position (in beats), 

vn  is its tempo (in Beat Per Minute). Each audio frame is 
also associated with an observation, which is a vector of 
PCM encoded audio, yn . Our aim is to infer the current 
score position xn from current and previous observations 
y1, ⋅ ⋅ ⋅ ,yn .  

 

Figure 1. Illustration of the state space model for online au-
dio-score alignment 

2.1 Process Model 

A process model defines the transition probability from 
the previous state to the current state, i.e. p(sn | sn−1) . We 
use two dynamic equations to define this transition. To 
update the score position, we use 

xn = xn−1 + l ⋅vn−1                             (1) 

where l  is the audio frame hop size. Thus, score position 
of the current audio frame is determined by the score po-
sition of the previous frame and the current tempo. To 
update the tempo, we use 

vn =
vn−1 + nv if zk ∈[xn−1, xn ] for some k
vn−1 otherwise

⎧
⎨
⎩

         (2) 

where  nv ∼ N(0,σ v
2 )  is a Gaussian noise variable; zk is 

the k-th note onset time in the score. This equation states 
that if the current score position has just passed a note 
onset, then the tempo makes a random walk around the 
previous tempo according to a Gaussian distribution; 
otherwise the tempo remains the same. Different from 
[17], we only consider the onset time and exclude the 
offset time when we segment the score into states, since 
offset parts will effect little due to the decay of weighting 
function. (It will be illustrated in Section 2.3.)  

2.2 Observation Model 

The observation model is to evaluate whether a hypothe-
sized state can explain the observation, i.e. p(yn | sn ) . 
Different representations of the audio frame can be used. 
Here we still use the multi-pitch analysis information in 
[16], since it is the most informative one to evaluate the 
hypothesized score position for most fully-scored musical 
works. So we use the multi-pitch observation likelihood 
as our observation model.  

The multi-pitch observation model is adapted from 
multi-pitch estimation in [17]. It is a maximum likeli-
hood-based method which finds the set of pitches that 



  
 

maximizes the likelihood of the power spectrum. In [17], 
each significant peak of the power spectrum is detected 
and represented as a frequency-amplitude pair ( fi ,ai ) . 
Non-peak regions of the power spectrum are also extract-
ed. The likelihood of the power spectrum given a set of 
hypothesized pitches θ  is defined in the peak region and 
non-peak region respectively.  

      (3) 
More details of this approach are described in [16] and 
[17]. 

2.3 Inference 

Given the process model and the observation model, we 
want to infer the state of the current frame from current 
and past observations. From a Bayesian point of view, 
this means we first estimate the posterior probability 
p(sn |Y1:n ) , then decide its value using some criterion like 
maximum a posterior (MAP) or minimum mean square 
error (MMSE). Here, Y1:n = (y1, ⋅ ⋅ ⋅ ,yn ) is a matrix whose 
each column denotes the observation in one frame. By 
Bayes’ rule, we have Equation (4). 

p (sn | Y1:n ) =
p (Y1:n | sn ) ⋅ p (sn )

p (Y1:n )

= Cn ⋅ p (yn | sn ) ⋅ p (sn−1 | Y1:n−1) ⋅ p(sn | sn−1)∫ dsn−1

     (4) 

Where yn ,Y1:n , sn and sn−1 are all random variables; sn−1
is integrated over the whole state space; Cn  is the nor-
malization factor. p(sn | sn−1)  is the process model and 
p(yn | sn )  is the observation model. 

Note that Equation (4) is a recursive equation of the 
posterior probability p (sn | Y1:n ) . Then we use particle 

filtering to implement the online process, as Figure.2 
shows. The parameters are the same as [16]. 

 

Figure 2. Particle filtering 

3. NOTE ONSET INFORMATION 

Until now, we have reviewed the model structure pro-
posed in [16]. But with more experiments, the prelimi-
nary online audio-score alignment algorithm proposed in 
[16] was found to fail for some musical pieces, especially 
when there are many staccato notes. The reason is that the 
multi-pitch-based observation model is not robust enough 
in these cases. In this section, we propose to improve this 
observation model using onset information. 

In theory, for faithful audio performances, an audio 
frame is expected to contain all score-indicated pitches at 
its corresponding score position. In practice, however, a 
frame may miss some expected pitches mainly because 
these notes are shorter than their expected lengths. Take 
Figure.2 as an example, the first red note is expected to 
be one beat long as in the score (from beat 1 to 2), but is 
only played for 0.7 beats in the audio performance. This 
can be due to the performing style (e.g. staccato), physi-
cal properties of the instrument (e.g. piano note decay) or 
taking a breath. Then the audio frames corresponding to 
the last 0.3 beats of the score note would not contain the 
expected pitch. In this case, the multi-pitch observation 
model would fail. In general, these frames often appear at 
the later phase of notes (close to offsets) as the gray area 
in Figure.3, since note offset times of a faithful audio per-
formance do not strictly follow the score. Concurrent 
notes whose offset times are expected to be at the same 
time may also be at different times. 

 

Figure 3. Note segments show with faithful frames (white) 
and unreliable frames (gray). 

3.1 Onset Detection 

In the case of multiple instruments playing at the same 
time, we use the spectral-based onset detection. We con-
vert the signal into frequency domain and then capture 
spectral changes in frequency content.  

For consideration of implementation, the frame win-
dow and hop size is the same as the observation model in 
Section 2.2. We use the log-magnitudeY (Figure.4.b) to 
calculate spectral flux Δspectral (Figure.4.d, blue) 

Δspectral(n) = |Y (n,k)−Y (n −1,k) | ≥0
k=0

K

∑         (5) 

where n is the current frame, k is the frequency bins, and 
| x | ≥0= (x + x ) / 2 , which means zero for negative ar-
guments. This rectification has the effect of counting only 
those frequencies where there is an increase in energy, 
and is intended to emphasize onsets rather than offsets. 
Then we introduce a local average function µ  (Figure.4.b, 
red) by setting: 



  
 

µ(n) = 1
W +1

Δ spectral (n +m)
m=−W

0

∑                   (6) 

where W determines the size of an averaging window. 
Then an enhanced spectral flux  

!Δspectral is obtained by 
subtracting the local average from Δspectral and by only 
keeping the positive part: 

 
!Δspectral(n) = | Δspectral(n)− µ(n) |≥0           (7) 

Then we set a threshold for the  
!Δspectral (Figure.4.c). If it 

is larger than the threshold, we know that there may exist 
note onset in the following frames. And then if 

 
!Δspectral(n) < !Δspectral(n −1)  

we consider that frame n −1is an onset frame. 

 

Figure 4. Flowchart of onset detection by spectral flux with 
(a) linear magnitude spectrogram, (b) log-magnitude spectro-

gram, (d)Δspectral(n)  and (c) 
!Δspectral(n) . 

Notice that we only use the past frames to calculate fre-
quency flux. So the system is still online when we add 
onset detection. 

3.2 Weighting Function 

The frames where the multi-pitch information is more 
reliable correspond to the transient part of a note. The 
transient part starts right after the onset of the note, as 
Figure.5 (b) shows. While offset times are ambiguous 
and hard to detect in nature as described before, onsets 
are clearly defined. So we introduce the weighting func-
tion in Equation (8): 

W = 1− C
1+ exp{−a ⋅(N − Nonset )+ b}

                  (8) 

where N  is the current frame, Nonset  is the onset frame 
it just pass by and a, b, C are parameters to shape the 
weighting function. Since we do not know exactly when 
the transient part will end, the reliability of the frames 
that are further away from onsets will be smaller. As the 
Figure.5 shows: 

 

Figure 5. Waveform of one piano note (a), envelope (b) and 
one possible function simulation (c). 

However, there is no universal shape of the weighting 
function to simulate every circumstance well. So we only 
simulate a piano note decay as our weighting function. 

By imposing a weighting function on audio frames so 
that more reliable frames will have larger weights. The 
weighting function will be multiplied with the multi-pitch 
observation model p(yn | sn )  in Equation (4). More relia-
ble frames will have stronger influence through the ob-
servation model to the alignment, and the robustness of 
the score follower will be improved. 

Then we apply the weighting function value to the ob-
servation model. By this way, we add more reliability to 
the frames right after an onset time than frames in the 
later phase of the note. 

4. EXPERIMENTAL RESULTS 

Experimental material contains some of Bach’s Chorales 
and RWC Classical Music Dataset. Since there is no 
ground-truth alignment in most music database, we can 
only measure the result by hearing the warped audio or 
MIDI. The alignment results are improved when dealing 
with piano music. But the current method still has some 
limitations: 
1. It can only work well for piano music with obvious 

onsets and it will get lost when it’s hard to detect on-
set such as strings music. 

2. Even in piano music, the alignment result will drop 
when the volume distribution of different pitch is dif-
ferent. Similar circumstance happens when the sus-
tain pedal of piano is often used. The echo will make 
the observation model fail. 

5. CONCLUSION 

In this paper, we utilize the note onset information to im-
prove an online music alignment algorithm and get better 
result in piano music. In terms of the limitations, there are 
some possible improvements in the future work. 

The first limitation is about the robust of onset detec-
tion. It’s easy to detect piano note onsets while soft onset 
from strings is difficult to detect. The spectral flux is one 
onset detection method. It gets high accuracy on piano 
music with low latency, so we can still get an online sys-
tem after applying this method. But a more advanced 
online onset detection method is necessary. 

For the second limitation, since the current method 
highly relies on the multi-pitch likelihood model, it’s sen-
sitive to inconformity of the spectra. Perhaps we need to 



  
 

train more models based on volume distribution of each 
pitch to consider the echo from last musical notes. 
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