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ABSTRACT 

Vibrato is an important music performance technique for 
both voice and various music instruments. In this paper, a 
signal processing framework for vibrato analysis is pre-
sented. In this framework, music vibrato is treated as a 
generalized descriptor of music timbre and its paramete-
rized feature dimensions are proposed. The authors im-
plemented signal analysis algorithms for segmenting son-
ic partials from musical sound and performing magni-
tude-frequency tracking of sonic components. Based on 
these analysis algorithms, various vibrato parameters are 
extracted from the magnitude/frequency tracking results. 
The authors also implemented extensive visualization 
functionalities that allows in-depth interaction with vibra-
to feature tracks and their parameterizations.. 

1. INTRODUCTION 

The music vibrato is termed a “pulsation in pitch, intensi-
ty and timbre” [1] because of its effectiveness in artistic 
rendering. However, this sonic expression is still largely 
treated as a mythology in music conservatories. In music 
pedagogy, music teachers use demonstration, body ges-
tures, and metaphors to convey their artistic intensions. 
Modern computer sound analysis tools are seldom em-
ployed.  In sound design, audio engineers manually in-
spect the audio spectrogram and manipulate a large 
amount of vibrato notes to condition them to content con-
text. However, only a blurred magnitude/frequency tra-
jectory can be observed from the audio spectrogram and 
these interactions are severely limited. Thus the goal of 
this paper is to demystify the music vibrato by providing 
extensive signal analysis, pattern recognition and interac-
tive tools and to help the musicians and sonic artist to 
better explore musical vibrato in an interactive manner. 
  
      Our proposed sound analysis methods are based on 
high-precision magnitude-frequency tracking. We aim at 
achieving higher analytic resolution compared to the ma-
nual inspection of audio spectrogram. Our proposed anal-
ysis framework is based on magnitude-frequency tracking 
of sonic partials. We segment the music tones into har-
monic partials using band-passed filters. We then perform 
magnitude-frequency tracking algorithm from these seg-
mented harmonic partials. In our implementation, each 
separated partial overtones are modeled as a quasi-
monochromatic component, which is a sinusoidal signal 
with narrow-band magnitude modulation and frequency 
modulation. Based on this signal model, the magnitude 
track and the frequency track are extracted from each 
harmonic partial. The magnitude track and the frequency 
track are further parameterized to extract descriptive fea-
tures for visualization. 

2. MAGNITUDE-FREQUENCY TRACKING 
ALGORITHMS 

In this section, we introduce algorithms that obtains the 
magnitude track and the frequency track from each sonic 
partials of music tones.  

2.1. Signal Model  

     Each segmented sonic partial is modeled as quasi-
monochromatic signal, which can be represented as: 

𝑆𝑆(𝑡𝑡) = 𝑎𝑎(𝑡𝑡) cos∅(𝑡𝑡) 

∅(𝑡𝑡) = 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 2𝜋𝜋� 𝑏𝑏(𝑡𝑡)
𝑡𝑡

−∞
𝑑𝑑𝑑𝑑 + ∅0 

where a(t) and b(t) are two slow-varying random 
processes with their bandwidth much smaller than the 
"monochromatic" frequency   𝑓𝑓𝑐𝑐  , ∅0  denotes the initial 
phase. 

       For convenience, the quasi-monochromatic signal is 
usually denoted as: 

𝑆𝑆(𝑡𝑡) = 𝑎𝑎(𝑡𝑡)𝑒𝑒𝑗𝑗∅(𝑡𝑡) 

        In the following theory part, we will stick to this 
definition because using exponential function makes the 
analysis part more succinct. This definition can be 
chanced to cos based definition by choosing the real part. 

       In this signal model, a(t) is called magnitude because 
it is the envelope of the signal. b(t) is called instantane-
ous frequency deviation because  

𝑑𝑑∅(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑓𝑓 + 𝑏𝑏(𝑡𝑡) 

           The bandwidth of quasi-monochromatic signal 
can be calculated as [2] 

𝐵𝐵 = ��𝑎𝑎′ 2(𝑡𝑡)𝑑𝑑𝑑𝑑 + �(2𝜋𝜋𝑓𝑓𝑐𝑐 + 2𝜋𝜋𝜋𝜋(𝑡𝑡) − 〈𝜔𝜔〉)2 𝑎𝑎2(𝑡𝑡)𝑑𝑑𝑑𝑑 

where 〈𝜔𝜔〉 denotes the mean frequency 

〈𝜔𝜔〉 = �[ 2𝜋𝜋𝑓𝑓𝑐𝑐 + 2𝜋𝜋𝜋𝜋(𝑡𝑡)]|𝑠𝑠(𝑡𝑡)|2𝑑𝑑𝑑𝑑 

= �[2𝜋𝜋𝑓𝑓𝑐𝑐 + 2𝜋𝜋𝜋𝜋(𝑡𝑡)]𝑎𝑎𝑡𝑡 𝑑𝑑𝑑𝑑 

      From  this representation, we see the bandwidth of 
s(f) is determined by a(t) and b(t) . Because a(t) is a 
slow-varying random process, and b(t) is small-value the 
bandwidth B very small, so the spectra content is con-
centrated in the vicinity of 𝑓𝑓𝑐𝑐  .Thus s(t) acts approx-
imately like a pure sinusoidal signal (which is called 
monochromatic ,or " one color"). For this reason s(t) is 
called quasi-monochromatic signal. 



  
 

2.2. Hilbert Transform Based Magnitude-Frequency 
Tracking  

       The detection method based on Hilbert transform , 
or analytic signal, is a standard method for magnitude-
frequency tracking in time-frequency analysis. Suppose 
that we have the source signal: 

𝑆𝑆(𝑡𝑡) = 𝑎𝑎(𝑡𝑡) cos∅(𝑡𝑡) 

∅(𝑡𝑡) = 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 2𝜋𝜋� 𝑏𝑏(𝑡𝑡)𝑑𝑑𝑑𝑑 + ∅°

𝑡𝑡

−∞
 

In our implementation, one sonic partial is obtained us-
ing banspass filtering. Figure 1 shows an oboe note be-
fore (a) and after filtering (b).   The fundamental sonic 
partial is picked out in this process and serves as  𝑆𝑆(𝑡𝑡).    
Its Hilbert transform is: 

𝑆𝑆ℎ(𝑡𝑡) =
1
𝜋𝜋
�

𝑠𝑠(𝑥𝑥)
𝑥𝑥 − 𝑡𝑡

∞

−∞
𝑑𝑑𝑑𝑑 

=
1
𝜋𝜋
�

𝑠𝑠(𝑡𝑡 + 𝑥𝑥)
𝑥𝑥

∞

−∞
𝑑𝑑𝑑𝑑 

           Because S(t) is a monochromatic  signal, which 
means the bandwidth of a(t) and b(t) are much smaller 
than  𝑓𝑓𝑐𝑐   , the Hilbert transform of S(t) can be easily cal-
culated using Bedrossian's theorem as: 

𝑆𝑆ℎ(𝑡𝑡) = 𝑎𝑎(𝑡𝑡) sin∅(𝑡𝑡) 

            From here, we can easily perform magnitude 
tracking as: 

𝑎𝑎(𝑡𝑡) = �𝑆𝑆2(𝑡𝑡) + 𝑆𝑆ℎ2(𝑡𝑡) 

            The frequency tracking can be achieved by Cal-
culating the phase variations ∅(𝑡𝑡) as  

∅(𝑡𝑡) = 𝑎𝑎𝑎𝑎𝑎𝑎 tan
𝑆𝑆ℎ(𝑡𝑡)
𝑆𝑆(𝑡𝑡)

 

from(3) we have the frequency deviation as: 

𝑏𝑏(𝑡𝑡) =
1

2𝜋𝜋
𝑑𝑑∅(𝑡𝑡)
𝑑𝑑𝑑𝑑

− 𝑓𝑓𝑐𝑐  

=
1

2𝜋𝜋
�
𝑆𝑆(𝑡𝑡)𝑆𝑆ℎ̇(𝑡𝑡) − 𝑆̇𝑆(𝑡𝑡)𝑆𝑆ℎ(𝑡𝑡)

𝑆𝑆2(𝑡𝑡) + 𝑆𝑆ℎ2(𝑡𝑡)
� − 𝑓𝑓𝑐𝑐  

where 𝑆̇𝑆(𝑡𝑡)denote the derivative of 𝑆𝑆(𝑡𝑡). 

A related method is called heterodyne filter method. 
From the representation of quasi-monochromatic signal, 
we observe that it can be viewed as a baseband signal be 
modulated to a carrier frequency of 𝑓𝑓𝑐𝑐   . Thus we can 
"demodulate" it back to baseband to perform detection 
by multiplying it with the carrier as: 

𝑆𝑆ℎ𝑠𝑠1(𝑡𝑡) = cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 𝑆𝑆(𝑡𝑡) 

=
1
2
𝑎𝑎(𝑡𝑡) cos∅�(𝑡𝑡) +

1
2
𝑎𝑎(𝑡𝑡) cos(4𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + ∅�(𝑡𝑡)) 

∅�(𝑡𝑡) = 2𝜋𝜋� 𝑏𝑏(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡

−∞
+ ∅° 

(a) 

(b) 

Figure 1. An oboe note before (a) and after filtering (b).   
The fundamental sonic partial is picked out in this 
process.            

      We can then apply a low-pass filter to 𝑆𝑆ℎ𝑠𝑠1(𝑡𝑡)  to 
eliminate the  2𝑓𝑓𝑐𝑐  component and result in: 

𝑆𝑆ℎ1 (𝑡𝑡) =
1
2
𝑎𝑎(𝑡𝑡) cos∅�(𝑡𝑡) 

we similarly form a quadrature component as: 

𝑆𝑆ℎ𝑠𝑠2 (𝑡𝑡) = sin 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 𝑆𝑆(𝑡𝑡) 

 
Similarly, after low-pass filtering, we have: 

𝑆𝑆ℎ2 (𝑡𝑡) = −
1
2
𝑎𝑎(𝑡𝑡) sin∅�(𝑡𝑡) 

Using the same procedure as Hilbert transform method, 
we get the detection results as: 

𝑎𝑎(𝑡𝑡) = √2�𝑆𝑆ℎ1
2 (𝑡𝑡) + 𝑆𝑆ℎ2

2 (𝑡𝑡) 

𝑏𝑏(𝑡𝑡) =
1

2𝜋𝜋
𝑑𝑑∅�(𝑡𝑡)
𝑑𝑑𝑑𝑑

 

=
1

2𝜋𝜋
�
𝑆𝑆ℎ1̇ (𝑡𝑡)𝑆𝑆ℎ2(𝑡𝑡) − 𝑆𝑆ℎ1(𝑡𝑡)𝑆𝑆ℎ2̇ (𝑡𝑡)

𝑆𝑆ℎ1
2 (𝑡𝑡) + 𝑆𝑆ℎ2

2 (𝑡𝑡)
� 



  
 

From these derivations, we see that the heterodyne filter 
method is equivalent to Hilbert transform method. The 
only different is that the heterodyne filter method con-
duct all the processing in the baseband, in the vicinity of 
zero frequency; while Hilbert transform method per-
formed all processing in the pass-band around 𝑓𝑓𝑐𝑐 .  

3. TRACKING RESULTS 

3.1 Magnitude-Frequency Tracking 

       The detection results of analytical signal method are 
illustrated in Figure 2. Figure 2 (a) is the time domain au-
dio waveform. Figure 2 (b) is the instantaneous amplitude 
extracted from the fundamental sonic partial, which is 
similar to the signal envelop in Figure 2 (a). Figure 2 (c) 
is the instantaneous frequency extracted from the funda-
mental sonic partial.  

       In Figure 3 we illustrate the AM/FM detection results 
using alternative methods. Figure 3 (a) is the signal am-
plitude obtained by block processing. We split the signal 
of the fundamental component to 20ms analysis frame. 
Then we calculate signal energy in every 20ms frames. 
The analysis resolution here is low than analytical signal 
method because we have to use a signal frame of enough 
length to calculate its energy. Figure 3 (b) is the instanta-
neous frequency detected by counting zero-crossing rate. 
In this method we first normalize the magnitude of the 
signal component. Then we calculate the rate the signal 
value oscillate across zero as instantaneous frequency. 
From Figure 3 we observe that we achieved similar re-
sults as in Figure 2, however, the result using analytical 
signal method (Figure 2) have better resolution. 

      From the audio waveform and the extracted feature 
tracks in Figure2. We can observe that the magnitude 
tracking result faithfully retained the shape of the audio 
magnitude. In the future, We also plan to apply auditory 
models for human response. The frequency track can also 
be observed in audio spectrogram (Figure 1) as the oscil-
lation curve in sonic partial but that trajectory is blurred. 
Our extracted frequency track conforms the shape of son-
ic partials, while provides much higher time resolution. 

3.2 Correlation between Magnitude and Frequency 

Figure 4 illustrates the correlation trajectory between in-
stantaneous amplitude and instantaneous frequency, by 
plotting a point at time at the coordinate location of the 
amplitude-frequency space. From Figure 4 we can ob-
serve that the volume variation and the pitch variation are 
well synchronized. 

4. VISUALIZATIONS 

     In our implementation, we provided visualization op-
tions perform in-depth analysis of the extracted magni-
tude-frequency tracks and compare vibrato parameters. 
These visualization functions are nice for interactions. 

 
(a) 

 
(b) 

 
(c) 

Figure 2: A visualization example of musical vibrato 
features. (a) is the the time domain audio waveform. (b) 
is the volume variation with time extracted from the fun-
damental sonic partial, which is similar to the signal en-
velop in (a). (c) is the pitch variation with time extracted 
from the fundamental sonic partial. We can observe that 
the magnitude tracking result faithfully retained the shape 
of the audio magnitude. The frequency track can also be 
observed in audio spectrogram (Figure 1), but we provide 
better time resolution. 



  
 

 
(a) 

 
(b) 

Figure 3: AM/FM detection Results Using Alternative 
Methods. (a) is the signal amplitude obtained by calculat-
ing signal energy in every 20ms frames. (b) is the instan-
taneous frequency detected by counting zero-crossing 
rate. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: A visualization the correlation trajectory be-
tween instantaneous amplitude and instantaneous fre-
quency.  

       In time-domain, our toolbox provide three-dimension 
visualization functions that enable us to compare multiple 
sonic partials.  In Figure 5 we provide a visualization ex-
ample that compares the magnitude track and the fre-
quency track extracted from the fundamental partial of an 
oboe note. The instantaneous frequency, magnitude and 
the time location decide the spatial coordinates of a visua-
lization element.         

        In Figure 6 we provided a frequency domain com-
parison of the magnitude track and the frequency track 
extracted from the same sonic partial. The magnitude, 
delay and the frequency decide the spatial locations. This 
visualization provides a complete signal profile in fre-
quency domain. This figure get all these features in 3d, 
we call it roller-coaster graph, the phase delay is the dif-
ference in fft phase between AM and  FM,  
  

 

Figure 5: A visualization example of musical vibrato features that compares the variational pattern of multiple 
feature dimensions. in a three dimensional space. The pitch deviation, loudness and the feature time location decide 
the spatial coordinates of a visualization element. f0 = 596.75Hz, Vibrato frequency = 5.02 Hz. 
 



  
 

a "𝜋𝜋 " delay means inverse phase , a "0" delay mean syn-
chronized here, the 5 HZ component have a phase delay 
of around "0", "0" here is no delay , means that the AM, 
FM is very synchronized. 
      This analysis/visualization framework can also be uti-
lized to analyze feature tracks extracted from different 
harmonic partials in both the time domain and the fre-
quency domain. A group of ensemble visualization func-
tions are also implemented to analyze a group of music 
files, or comparing parameters extracted from multiple 
harmonic partials from the same music tone. For exam-
ple, we can also analyze the magnitude-frequency tracks 
from multiple harmonic partials from a music note. In 
Figure 7, we analyze the sonic partials from a Saxphone 
tone . Here we plot the vibrato parameter of modulation 
index. The term modulation index describes how deep the 
modulation is. The signal with high peak-valley distance 
will have a higher modulation index, it is defined as: 

𝑀𝑀 =
1
𝑇𝑇
∑ 𝑃𝑃𝑖𝑖𝑇𝑇
𝑖𝑖=1

𝑉𝑉
 

Here 𝑃𝑃𝑖𝑖 is several peak-valley distance obtained from the 
vibrato waveform. Here we use MIR toolbox for peak-
picking. V is the complete dynamic range. Here we take 
the mean value for peak-valley distance to make this 
measurement more robust. The modulation index for 
magnitude track is called "AM Index", The modulation 
index for frequency track is called "FM Index". These 
two terms conform to related terms in ampli-
tude/frequency modulation in communication engineer-
ing. 
       Figure 7 (a) is the magnitude tracking results for this 
music note. Here we only show part of the results. (b) is 
AM index for 20 harmonic partials. (c) is their FM index, 
in cent, a cent is 1/100 (one-hundredth) of a semitone. 
Musicians like this unit because it conveys the deviation 
from normal pitch grid and thus intuitive. 
       
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    We also implemented batch processing functions to 
compares multiple music notes. Using this visualization 
framework, we can also analyze other sound features 
from a group of audio files. In Figure 8 as an example, 
we analyses a group of trumpet tones. We have 35 trum-
pet tone here, their fundamental frequency from E3 to 
D6. Here we analyze the modulation indices for the 1st 
harmonic partials of these 35 trumpet tones. In Figure 8 
(a) we get AM indices for each note, each note is placed 
at the frequency location of their fundamental frequency. 
In Figure 8 (b) we get FM index in percentage for each 
note. This "ensemble analysis" let us effective navigate a 
sound database.   

5. CONCLUSIONS 

We achieve high analysis precision for both magnitude 
tracking tasks and  frequency tracking tasks using the de-
tection method based on analytic signals. Based on the 
analysis methods of individual sonic partials, we general-
ize the analysis to complex harmonic structures and mul-
tiple music notes. We also implemented visualization sys-
tem for analysis. The proposed analysis tools serves as a 
musical communication to convey musical concepts in an 
intuitive manner, while maintaining solid signal 
processing background, thus is suitable for various appli-
cations that require high analytic precision such as physi-
cal modeling based re-synthesis, electronic instrument 
timbre design, music performance analysis, and music 
cognition experimentations. 
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Figure 6: A visualization example of musical vibrato features that compares the variation pattern of multiple fea-
ture dimensions in frequency domain. in a three dimensional space. The spectra of pitch deviation, and magnitude 
decide the spatial coordinates of a visualization element.  
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 Figure 7: An ensemble visualization example of musical vibrato features. This is a Alto Saxphone note with a 
fundamental frequency of 173.9Hz. (a) is the magnitude tracking results for this music note. Here we only show part 
of the results. (b) is AM index for 20 harmonic partials. (c) is their FM index, in cent, a cent is 1/100 (one-hundredth) 
of a semitone. 

 

 
(a) 
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Figure 8: Analysis multiple audio files and makes comparisons. This is a a group of 35 trumpet tones with fundamental 
frequency from E3 to D6. Here we analyze the modulation indices for the 1st harmonic partials In Figure (a) we get AM 
indices for each note, each note is placed at the frequency location of their fundamental frequency. In (b) we get FM index 
in percentage for each note. 

 


