

A Real-time Karaoke Scoring System Based on Pitch Detection

 Minhao Zhang

 University of Rochester
mzhang46@ur.rochester.edu

ABSTRACT

Currently there are many ways to give a karaoke user a

score when he or she sings in a Karaoke system. Some of

them are based on the loudness of the singers’ voice, some

based on tempo and some may have combinations of dif-

ferent method to give a precise evaluation of the singer’s

job compared to the original version. But among all the

criteria, the pitch precision should be the most important

factor that contributes to the user’s score. Many applica-

tion will also have graphs to show the user how well they

do besides giving a final score only. Some are real time

some are not. In our scoring system, the final score is based

on the pitch precision only. The user will also have a real

time feedback pitch difference in graph to show how much

difference they have from the standard (original version)

pitch while they sing. So when looking at the graph, the

users can adjust their performance real time.

1. INTRODUCTION

This Karaoke scoring system can be taken down into 3

parts: the single pitch detection part, the real time sound

feedback part and the graphs, plots and graphic user inter-

face part. The pitch detection uses the YIN algorithm. The

real time code just makes some short time frame. And then

each frame is processed by YIN algorithm. The graphic

user interface basically tried to make the system easy and

intuitive for the users.

In later sections, this paper will focus on explaining each

separate parts. For each one, the basic functionality and

parameter will be showed and then followed by the testing

procedure which tried to simulate the environment when

all the parts are put together to work. Since this system is

still a prototype currently, some drawbacks will also be

discussed. In the end, it will also talk about the extensions,

possible improvements and future work of this system.

2. THE PITCH DETECTION PART

2.1 Functionality

The pitch detection part uses the YIN algorithm. In other

words, we detect the fundamental frequency of the user’s

voice and original song. Since most of the pitch depend

on the fundamental frequency so this algorithm is good

enough to do the job. In homework 2, this algorithm is

successfully coded to work. But it’s in the offline situa-

tion. The following part first discuss a little bit about the

YIN algorithm and then some testing procedure and mod-

ification of the old code to make it work real time.

The YIN algorithm can be simplified into 6 steps.

1. The autocorrelation

This step just breaks the whole signal into many

windows and calculate the autocorrelation value

of each window and plot the results of each win-

dow versus lagging samples the highest autocor-

relation value corresponds to the position of the

fundamental frequency. The equation used is (1).

𝑟′ = ∑ 𝑥𝑗𝑥𝑗+𝜏
𝑡+𝑊−𝜏

𝑗=𝑡+1
 (1)

2. The difference function

In this step we take the difference of the signal in

each window. And plot the results. The follow-

ing equation (2) is used.

𝑑𝑡(𝜏) = 𝑟𝑡(0) + 𝑟𝑡+𝜏(0)2𝑟𝑡(𝜏) (2)

3. Cumulative mean normalized difference func-

tion

To make a better result in step2, we replace the

difference function by the “cumulative mean

normalized difference function”.

𝑑𝑡
′(𝜏) = {

1, 𝑖𝑓 𝜏 = 0
𝑑𝑡(𝜏)

1

𝜏
∑ 𝑑𝑡(𝑗)𝜏

𝑗=1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3)

4. Absolute threshold

The autocorrelation method is likewise to choose

a high-order peak. So the threshold determines

the power tolerated within a “periodic” signal.

5. Parabolic interpolation

Based on the distribution of the results, we try to

fit a parabola on it can take the local minimum as

the final fundamental frequency.

6. Best local estimate

Measure d’(T) that selects the best local estimate.

The six steps showed above are the basic for YIN. But in

our system, we use only the first four steps. So we skip

some explanations in step 5 and step 6. The original YI

limits the error rate to 0.5%. But with the first four steps

showed above, the error can be controlled to 0.78%. Table

1 shows the error rate of each step.

Version Gross error (%)

Step 1 10.0

Step 2 1.95

Step 3 1.69

Step 4 0.78

Step 5 0.77

Step 6 0.50

Table 1. Table that shows the gross error rate for each step

in YIN algorithm. Note only first 4 steps are used in this

system.

As we know, one huge difference between a real time and

an offline is the length of the signal in each processing

iteration. There is only 1 frame in offline system but there

are many more in real time system. So Table 2 shows the

different working environment of the 2 different situation.

And our job is to make sure the code works at the real time

situation.

 Offline Real-Time

Frame Number 1 Total/50ms

Frame Length Whole song 50ms

Hop Size 10ms 10ms

Window Size 46.4ms 25ms

Depth 0.1 0.1

Sampling Rate 44100 Hz 44100 Hz

Table 2. Table that shows the environment parameter of

different situation.

The final score is based on how close the user’s pitch is to

the original version’s pitch. We only care about the relative

difference of the 2 pitch contour so a ground truth answer

is not necessary. Both version’s pitch are detected by same

YIN algorithm. The final score is in equation (4).

Score = 100- Sum of [P(orig) – P(user)]/total samples (4)

2.2 Testing Procedures

In order to have 50ms time frame, we change the time unit

to signal samples unit. We use 20ms to test in this case.

We first broke the whole song into connected frames with

each one 50ms long. Then we run the YIN with the param-

eters in the third column in Table 2. Then we connect the

pitch output in time order and compare it with the offline

result. Figure 1 shows the single note testing result. We use

the note: “BbClar_mf_C6B6_4.wav”. As we can see from

Figure 1, two pitch results are almost the same. So long as

the offline algorithm gives us the correct results. The real-

time code should be able to precisely detect the pitch that

user sings. The x axis of real time is in samples. Also the

length of samples are different is because the difference in

hop size and window size. Same test procedure also ap-

plied to a human voice singing recording, which also

shows a good result.

(a)

(b)

Figure 1. (a): The real time pitch detection result. The red

vertical line at the end is the time cursor. The graph is

originally an animation. This is the snapshot of the last

time frame. (b): the offline pitch detection result

3. REAL-TIME IMPLEMENTATION

3.1 Functionality

The real time part’s job is to let the user hear back their

voice when they talk to the microphone. Meanwhile it

should store the data of the user’s singing signal, more spe-

cifically, the pitch data.

The time latency is 50 milliseconds without hearing back

any artifacts. A 50ms is a good frame length, it will give

only very short time delay when you hear your voice in the

headphone. This part is hard to change since Matlab is a

slow processing tool. If we code it in C++, the time latency

can be shortened. But it should not be too short, otherwise

the YIN can barely work.

This part is coded using audiovideo class of Matlab 2012.

But it cannot run beyond this Matlab version due to some

modification and function removal in later versions.

3.2 Testing Procedures

This part does not have a systematic testing steps. We ba-

sically built the code, run it and listen to feedback from

headphone. Note, we have to use a headphone to test it,

since a speaker will get you into an infinite sound feedback

which is pretty annoying. By listening to it we can roughly

determine the time latency. And by change the parameter

in the function, we can change how much latency we want.

Since we cannot compare exactly the data we received

from microphone. So we just plot the data real time and

roughly determine the correctness of the data stores. Fig-

ure 2 is one snap shot when a user is singing. And by ob-

serving the graph, the result makes sense to us. So this part

should be able to work.

Figure 2. Vertical axis is in log scale, horizontal is in

samples, right now it’s a 20ms time frame. With Fs =

44100, it should have 882 number of points.

4. GRAPH, PLOT AND GUI

4.1 Functionality

The GUI lets user choose if they want the accompaniment.

Then the user can choose when they are about to sing after

they press the begin button. After the user began, the same

graph with original pitch on it will have a red vertical line

showing the time frame they are on, which across the pitch

plot, so the user will know at which pitch they are on.

Meanwhile somewhere on the red vertical line, the pitch

that the user sing will be plot on the graph. Now by just

following this time frame line, the user can compare at this

single moment how close his or her pitch is to the original

on. When they are done singing, they just need to hit the

stop button. The track of how they sang will be left on the

graph. There are also sliders to see the history of the pitch

contour. They can zoom in and move around the final plot.

The basic function to build the UI buttons are uicontorl().

And the some call back functions are related to the sliders

and buttons to control the system. Some buttons do not

have a call back functions like the next song button and

previous song button. The reason they are there is to pro-

vide a complete out appearance of the system. And other

people can add functions to them. Figure 3 shows what the

GUI looks like at the very beginning.

Figure 3. This is the very beginning when running the sys-

tem. The black pitch contour is the original version’s pitch.

The button below the plot let user control the system. The

2 black bars are the sliders to zoom in/out and move around

the plot when they user is done singing.

The main feature of the graph part is animation. Since the

song’s length may differ from each other and we sing it

real time, there are 2 parts in the graphs need to be moving.

First everything in the plot need to be moving like the pitch

result, the time frame cursor. Second, the axes need to be

moving. This is due to some long time song, if we make a

really long time axis, the content in the graph will be hard

to see, so it will not help the users to adjust their voice

based on the graph.

In dynamic graphs implementation, one important design

will be the efficiency. Plus we want it work in real-time,

the efficiency is even more important. But creating part of

the figure and axes are taking a lot of time. So in this im-

plementation, instead of using plot() function in each

drawing process, we use only one plot for each graph ob-

ject. And we use the set() function to change the data of

the drawing to make change with time. This way it saves a

lot of time.

4.2 Testing Procedures

In order to test the dynamic graph, we made a sin function

with the frequency to be the time value. We also plot the

red vertical line together with it. So we know were exactly

the time is. The animation can be described like an oscil-

loscope showing a sin function wave with a low frequency

from an AC power source (like a function generator). Fig-

ure 3 shows some snap shots of this dynamic plot. The

graphs are in time order. And the time cursor is moving

continuously. Note the time axis is in the unit of 0.1 sec-

ond.

Besides, this part has successfully worked with the pitch

detection part. Figure 2(a) is got from the dynamic graph.

Figure 5 also shows a final version of the dynamic pitch

plot with both original version and the user’s singing ver-

sion on it.

For GUI testing, we just build it and play around with it.

We tried different combinations to press the buttons in or-

der to find some bugs. And after fixing some bugs, the GUI

basically works fine.

(a)

(b)

Figure 4. The dynamic graph plotting a sine function

Figure 5. Black pitch contour is the original version’s

pitch. The Blue contour is the user’s pitch. Time axis is the

horizontal axis in samples. Vertical axis is in Hz, shows

the frequency of the pitch.

5. FUTURE WORK

Since currently we just build the core part of this pitch

scoring system. It is not very practical. For example it is

very sensitive to noise. The user has to be really close to

the microphone in order to send a strong signal. Or they

have to have a good microphone not to picking the sound

from the other directions.

So in future, more work can be done to make the pitch de-

tection more robust.

The cover song played in the background is very well

aligned with the time progress showed in the plot which

can bring confuse to the users. It is cause by the time la-

tency of the real time system.

A future work can be trying to reduce this synchronization.

Besides one can also try to code this system in other source

code like C++, so it will have low latency and better

graphic user interface.

6. REFERENCES

[1] A. Cheveigne: “YIN, a fundamental frequency

estimator for speech and music,” 2002 Acoustical

Society of America, pp. 1917–1930, 2001.

