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ABSTRACT

This paper presents a system for transcription and source
separation of polyphonic drum recordings. Such a system
may find applications in music education, music produc-
tion, or entertainment. The system’s methods for detec-
tion and decomposition are based on the well-known Non-
Negative Matrix Factorization (NMF) approach. The ba-
sic multiplicative update rules are modified to capture the
spectral variation over time of the percussive sounds per
frame by using semi-adaptive update rules for the spectral
templates. Additionally, two dictionary atoms are stored
for each drum sound contained in the mixture, correspond-
ing to the initial transient and steady-state decay of the
drum sound. State-of-the-art onset detection methods are
examined and applied to the initial decomposition. The
proposed modification is shown to improve the f-score of
the transcription given an identical onset detection func-
tion. We compare the transcription statistics over a dataset
generated from acoustic and electronic drum samples.

1. INTRODUCTION

With the advent of digital recording technology, new pos-
sibilities in music performance, production, and transcrip-
tion have presented themselves. The work in this paper is
centered around the transcription and separation of single
drum instruments when presented with a monaural, poly-
phonic recording of a drum kit performance. Thus, we are
concerned with the topics of both automatic music tran-
scription and musical source separation. Each of these is
a major topic of research in the field of Music Information
Retrieval (MIR) [1, 2].

The goals and practical applications of this work are
well summarized in [2] and reiterated below. In a typical
recording situation, each drum is recorded with a dedicated
microphone to allow for separate treatment and processing
of these individual drum signals; nonetheless, cross-talk
between microphones is often unavoidable, and in a stu-
dio with a limited budget, a dedicated microphone may not
be available for each drum. Thus, there are considerable
advantages to a single-microphone solution in which sin-
gle drums are isolated and transcribed in real-time from
a monaural source recording, and the proposed method
may find use in a piece of a music production software
for this purpose. Additionally, a number of commercially
available educational video games, such as RockSmith and
BandFuse, are available, allowing users to practice drums

as their performance and timing is assessed in real-time.
However, all such systems are dependent on MIDI-triggered
drum sounds, and employ an electronic drum kit. The
method described in this paper may enable the develop-
ment of a drum training system which allows the user to
perform on a real, acoustic drum kit, while providing a
similar level of feedback and performance assessment. Fi-
nally, the system may be applied to more traditional tran-
scription purposes in the event that a source recording of
the isolated drum kit is available; for example, to aid in
transcription of a drum solo, or of the entire drumbeat of a
song if the isolated drum recording is available.

As in [2], the proposed method is dependent upon a
training phase in which each of the drum sounds contained
in the transcription mixture is recorded and analyzed in iso-
lation, to establish spectral templates to be matched in the
transcription phase. This requirement is easily satisfied in
each of the three application scenarios mentioned above
by performing a ”sound check” in which each individual
drum is struck a number of times in isolation. While there
are a multitude of different types of drums, and an infinite
number of drum kit configurations, there are three percus-
sive instruments in particular which are found in virtually
all drum kits and make up the basis of the drum perfor-
mances in much of contemporary popular music: the kick
drum, snare drum, and hi-hat. For this reason, we focus on
the transcription and decomposition of these three drum
sounds in this paper.

The kick drum is a large drum, typically struck with
a foot pedal, and produces a low-pitched resonant sound.
The snare drum is smaller, and features a set of metal wires
stretched over the bottom drum head, lending it a brighter
sound with a higher-pitched resonance than the kick drum.
The hi hat is a pair of cymbals struck of which the top
cymbal is struck during performance. A foot pedal en-
ables switching between an open hi hat configuration, in
which the cymbals ring out against each other, and closed
configuration, in which the cymbals are held tightly to-
gether. The hi hat produces a click-like sound with a rapid
decay in closed mode, and a bright, splashy sound with
a long decay in open mode. While a naive approach to
transcription of these sounds might simply classify drum
occurrences by their spectral centroid, this fails in prac-
tice because drum sounds often coincide with each other
in a polyphonic drum performance. For this reason, the
proposed method first performs source separation on the
monaural mixture of drum sounds, then transcribes each



drum’s performed rhythm in isolation.
The remainder of this paper adheres to the following

structure. In Sec. 2, the current state-of-the-art in source
separation for drum transcription using NMF is summa-
rized. In Sec. 3, the novel method is proposed, and its
relation to prior work is examined. In Sec. 4, experiments
are performed on the proposed method, and results of the
novel approach are compared to those of other state-of-the-
art methods. Finally, Sec. 5 summarizes these results and
the significance of the findings.

2. PRIOR WORK

This section summarizes some state-of-the-art techniques
for drum source transcription and separation. Since the
decomposition and transcription processes are performed
separately in our approach, we examine methodologies for
each separately. We discuss prior work in drum source
separation, focusing on NMF-based decompositions, since
these are most closely related to the proposed method.

NMF is a learning algorithm for the decomposition of
a nonnegative matrix X . Lee and Seung provide a discus-
sion of the general form of the NMF problem along with
proofs of convergence for proposed solutions to the prob-
lem in [3]. In general, given a nonnegative matrixX , NMF
attempts to find non-negative matrices B and H such that

X ≈ BH (1)

Given a matrixX with dimensions n xm, then, we seek
a factorization consisting of a n x r matrix W and an r x
m matrix H , with W and H both nonnegative. We typi-
cally choose a value of r much smaller than either n or m,
such that B and H yield a compressed representation of
the initial data. We see that each column of X can be ap-
proximated by x ≈ Bh, where x and h are corresponding
columns of X and H . Thus we can view each column of
X as a linear combination of the columns of B weighted
by components of h. Inspired by this interpretation, the
columns of B are typically referred to as ”basis vectors”,
while the rows of H are often called ”activations.” It is im-
portant to note that a good approximation of the original
data can be obtained only if the basis vectors uncover la-
tent structure in the data, since we typically have far more
data vectors in X than we have basis vectors in B.

Typically, the initial matrix X is decomposed by min-
imizing a divergence function between X and the recon-
structed matrix BH . A common choice for the cost func-
tion is the Kullback-Leibler (KL) divergence, which is given
for matrices A and B as

D(A||B) =
∑
ij

(Aij −Bij)2 (2)

The KL divergence can be minimized by performing it-
erative multiplicative updates onB andH according to the
following equations as shown in [3]:

B ← B ·
X
BHB

T

1BT
(3)

H ← H ·
BT X

BH

BT 1
(4)

These rules additionally enforce the non-negative con-
straints imposed on B and H .

In the application of NMF to the decomposition of mu-
sical spectra, the initial data matrix X is typically a mag-
nitude spectrogram of the musical performance obtained
via STFT. The matrix B, then, stores spectral templates of
musical events in its columns, while the rows of H con-
tain temporal activation weightings for the corresponding
spectral templates. Individual musical voices can then be
isolated from the spectrogram mixture by multiplying sin-
gle columns of B with corresponding rows of H , yielding
a new spectrogram of the isolated source.

A modification of the Lee and Seung update rules is
presented in [2], which makes use of semi-adaptive bases
to apply NMF to drum source separation. In this method,
he matrix B is initialized with a learned spectral basis ma-
trix Bp. Each basis vector in Bp is obtained by taking the
STFT of the training recording for each drum source, and
simply averaging across the time dimension. In the semi-
adaptive approach, rather than leavingBp fixed throughout
the decomposition, or allowing it to freely iterate towards
B according to the standard update rules, a blending pa-
rameter, α, is introduced to provide a mixture of these two
approaches. Eqn (5) shows the update step which replaces
Eqn (3), and illustrates how the spectral content of B is
weighted towards its initial value, Bp with high α, and re-
verts to the NMF decomposition B with low α. Eqn (6)
shows the calculation of α, which decreases as the current
NMF iteration, k, approaches the iteration limit, K, based
on a user-selected parameter, β.

B = α ·Bp + (1− α) ·B (5)

α = (1− k

K
)β (6)

In order to best capture the rapidly changing spectral-
temporal characteristics of percussive sound sources, the
methodology of [2] calls for the application of the NMF
algorithm to each individual spectral frame of the monau-
ral drum recording, with the vectors B and H reverting to
their initial values following NMF decomposition of the
previous frame.

3. PROPOSED METHOD

We propose a novel method for establishing the basis ma-
trix, Bp. The rank of the NMF decomposition is expanded
from 3 to 6: we introduce separate templates for drum
”heads” and ”tails” as in [5]. We first run onset detec-
tion on the training data for each drum. The head tem-
plate, BH , is taken as the time average across spectrogram
frames containing onsets, while the tail spectrum for each
drum is simply the time-average across the remaining spec-
trogram frames. Now semi-adaptive NMF is applied on a



Figure 1. Comparison of head and tail spectra for snare
drum.

Figure 2. Block diagram of proposed method.

per-frame basis to the magnitude spectrogram of the test
data, in order to perform the source separation as in [2].
Onset detection is then applied to reconstructed spectro-
grams of each drum, taken as the sum of the head and tail
reconstructions.

Many mistaken onsets in NMF-based drum transcrip-
tion are caused by cross talk between the activations [2, 4,
5]. This is because drum attack transients typically mani-
fest as short bursts of broadband noise; thus, if no spectral
template is a very close match for the transient, other tem-
plates will be activated to attempt a better approximation.
In order to obtain the most salient activation information
in H , we should begin with spectral templates for drum
attacks which are unique to the corresponding drum.

We conjecture that expanding the rank of the NMF by
introducing the head templates will reduce the number of
mistaken onsets due to crosstalk. Since we begin each
NMF decomposition with templates explaining the attack
of each drum hit, we will be less likely to see these tran-

Figure 3. Spectrogram of a test mixture containing kick,
snare, and hi-hat.

sient weightings assigned to the activations of templates
corresponding to the incorrect drum. In a sense, the head
template should ”absorb” much of the activation energy
which would otherwise be distributed among all rows ofH
in an attempt to approximate the broadband burst of noise
corresponding to the drum attack.

4. EXPERIMENTS

Experiments were conducted comparing the rank 3 decom-
position presented in [2] with the novel approach employ-
ing head and tail templates for each drum. We examine the
rank 3 decomposition with fixed templates, semi-adaptive
templates, semi-adaptive heads with fixed tails, and semi-
adaptive tails with fixed heads. We also include blind NMF
results for comparison. The data set for these results has
its origin in [6]. The expanded data-set, containing onset
annotations and synthetic drum patterns in addition to the
original acoustic recordings, was compiled in [2] and it is
this set on which we present our results. There are a to-
tal of 10 minutes of audio, containing 33 separate drum
sequences with 3741 annotated onsets. Following the find-
ings of [2], we selected parameters of H = 512 samples
hop-size,N = 2048 bins spectrum size,K = 25 NMF itera-
tions, and β = 4. For the onset detection function, we apply
a simplified version of [1], to the reconstructed magnitude
spectrogram for each drum, based solely on the first-order
difference of the half-wave rectified amplitude and simple
thresholding. We used a threshold of 0.4 for the normal-
ized first-order difference to determine an onset. From the
onset detection, we calculate the location of the onsets in
units of seconds, and compare the results for each tail com-
ponent to the

Experimental results are presented in Table 1. We see
that the blind NMF approach compares poorly to the source-
informed methods. With semi-adaptive rank 3 implemen-
tation, we acheive and f-score of 0.90. Although these re-
sults do not equal the f-score of 0.95 obtained using this
method in [2], this is probably due to the less sophisticated
onset detection method employed in our experiments. If
we expand the rank to 6 and obtain separate head and tail



Figure 4. Spectrogram of the separated snare drum for the
test mixture from the previous figure.

templates, as proposed in our paper, both fixed and semi-
adaptive NMF yield a significantly lower f-score than the
semi-adaptive rank 3 method. However, with fixed head
templates, we achieve results essentially equivalent to the
semi-adaptive rank 3 method.

We can conclude that simply expanding the rank of the
spectral templates in semi-adaptive NMF for drum tran-
scription to contain head and tail templates actually results
in poorer transcription performance. It is believed that the
semi-adaptive head templates will explain onsets for each
of the drums fairly well by the end of the iteration limit,
and that any broadband transient in the spectrogram will
end up being distributed among each of these adaptive tem-
plates. These head templates effectively consume spectral
information relating to noisy parts of the signal and dis-
tribute it equally among the drum components; this ex-
plains why this approach yields a low precision, because
many of the peaks in activation are distributed too sparsely
across the components to trigger the correct onset. It has
been observed that the semi-adaptive learned spectra for
the head templates look very similar for frames contain-
ing coinciding onsets of multiple drums, supporting this
conclusion. However we also note that by fixing the head
templates and allowing the tails to adapt, we preserve the
most distinguishing information about the attack of each
drum, throughout the iteration cycle. The result is the that
there is less crosstalk overall than semi-adaptive heads, and
the results approach the state of the art results of [2]. It is
interesting to note that allowing the tail spectra to adapt,
however, still results in a measurable improvement over
fixed NMF. Further work is needed to examine if there are
any unobserved benefits to be gained from this expanded
rank NMF decomposition with fixed heads. We are partic-
ularly interested to compare the perceptual quality of the
audio source separation for each of the examined methods.

5. CONCLUSION

A novel method for polyphonic drum source separation
and transcription was proposed. The method uses two spec-
tral templates per drum source to model the attack and
decay of the percussive sounds separately. The novel ap-

Method Precision Recall f-score
Blind NMF 0.76 0.72 0.73

Semi-adaptive (r=3) 0.95 0.88 0.90
Fixed Head/Tail Templates 0.93 0.84 0.87
Semi-adaptive Heads/Tails 0.83 0.87 0.83
Semi-adaptive, Fixed Tails 0.89 0.66 0.72
Semi-adaptive,Fixed Heads 0.95 0.88 0.90

Table 1. Results of experiments.

proach was tested on a standardized data set. The f -score
were achieved with the modifications proposed in this pa-
per equal those obtained using standard semi-adaptive NMF,
provided the head templates of the drums are fixed. This
suggests that the rank 6 decomposition approach may be
applied with success to polyphonic drum transcription.
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