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ABSTRACT

A cover song, cover version, or simply cover, by defini-
tion, is a new performance or recording of a previously
recorded, commercially released song. It may be by the
original artist themselves or a different artist altogether.
Automatic cover song detection has been an active research
area in the field of Computer Audition for the past decade.
In this paper, we propose a novel method for cover song
detection using automatic extraction of audio features with
a stacked auto-encoder (SAE) combined with beat tracking
in order to maintain temporal synchronicity.

1. INTRODUCTION

The proliferation of cheap digital media creation tools and
free web based publishing platforms has led to an ever-
expanding universe of audio-visual content available for all
to access on the world wide web. Although much of this
content is original in nature, a stunning amount is cover
material. For example, a recent search of a popular video
sharing site for the term “Beatles cover” turned up 3.97
million matches. Over their entire career, The Beatles re-
leased a total of 257 songs.

A cover song may vary from the original song in tempo,
timber, key, arrangement, instrumentation and/or vocals.
More often than not, the most prevalent parts of an original
song carried over to the cover song include the melody of
the song and the chorus, especially in the case of pop mu-
sic. The wide variety of variables creates a very challeng-
ing and interesting classification problem. Although cover
song identification is not an outwardly extremely important
problem, it is a form of music similarity recognition which
is one of the key aspects of music information research.

2. OVERVIEW

Ours is a four-step process. First the song is analyzed for
tempo using the beat tracking algorithm implemented by
D. Ellis [5]. The length of one beat of the song, or a 1/4
note assuming a 4/4 time signature, is saved. Second, a
spectro-temporal analysis is performed on the entire audio
file. We try both a constant Q transform (CQT) and 12-
semitone shifted chroma vectors. The window size is set
as the length of the extracted beat and the overlap is set
at 50%. The spectrogram is then segmented into patches,
each containing 8 frame of the spectrogram. This corre-
sponds exactly to four beats with 50% overlap or one musi-
cal measure, assuming 4/4. Thirdly, each patch is reshaped
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Figure 1. System block diagram

into a vector and fed into a two-layer SAE. The SAE uses
backpropagation to automatically extract relevant features
from the audio. It is trained on an input set consisting on
all of the original songs. Finally, each original and corre-
sponding cover song is fed into the SAE to create an output
feature vector. The ”distance” of each cover song’s feature
vector is measured from each original song’s using a dy-
namic time warping and euclidean distance. If the correct
cover song is closest to its corresponding original song, the
classification is deemed a success.

3. RELATED WORK

Previous work in this field has seen a variety of methods,
the most successful of which have used beat-by-chroma
feature extraction and cross-correlation to identify matches
[2] [3] [4]. Beat-by-chroma feature analysis is a method of
spectral analysis which bins the entire spectrum of audio
into 12 frequency bins corresponding to the 12 notes of
the semitonal musical scale and indexes them in time to
match the song’s tempo. Our method attempts to build on
this method by introducing the automatic feature extraction
of the neural network to learn time and spectral features
which may be lost using other methods.

4. IMPLEMENTATION

The proposed system consists of the four main components
shown visually in Figure 2 and described in the Overview
section. An additional preprocessing step to prepare the
audio for feature extraction is also performed.

4.1 Dataset

We use a slightly augmented “covers80” dataset [4] pro-
posed at MIREX 2007 to benchmark cover song recog-
nition systems. This dataset contains 80 sets of original
and cover songs - 166 total - spanning genres, styles and
live/recorded music. The dataset is biased towards western



pop/rock music. Most songs contain only one cover ver-
sion however some songs contain up to three. For speed of
data processing and iteration, we trimmed the dataset to 80
pairs of original and cover songs, for 160 songs total split
evenly.

4.2 Preprocessing

The files are converted from monophonic 16 kHz mp3 files
into monophonic 16 kHz wav files. They are then input
into an open-source automatic beat-tracker [5]. The soft-
ware computes a vector containing beat onset times. The
files are then truncated to start at the first beat and end at
the last beat, in order to mitigate any intro or outro discrep-
ancies caused by common cover music attributes such as
clapping from live performances or extended introductory
speeches. The minimum time between beats was chosen
from the beat tracking vector for use in determining win-
dow size of the spectral analysis.

4.3 Spectral Analysis

Two forms of spectral analysis are implemented during it-
erative testing of our system, a constant-Q transform (CQT)
and a 12-semitone shifted stacked set of chroma features.

4.3.1 CQT

A 9-octave (20-8000 Hz) Constant-Q Transform (CQT) is
then employed to calculate the cover song spectrogram us-
ing the MATLAB CQT toolbox [6]. Each octave contains
20 bins with a total of 180 frequency bins. The time frame
hop size corresponds to one beat calculated during beat
tracking. We use CQT instead of short-time Fourier trans-
form (STFT) because the log-frequency scale in CQT bet-
ter corresponds to human auditory perception.

In order to effectively train the SAE, the CQT spec-
trogram is segmented again into fixed-size patches. The
length of each patch is set to four times the previously
calculated mean beat time. As most of the music in the
dataset is pop music, it is likely written in the 4/4 time sig-
nature. Taking a 4-beat long patch will be equivalent to
taking one measure with a 50% overlap in case of any beat
tracking discrepancies. One measure is chosen as it is a
sufficiently granular chunk of time to have many iterations
per song with which to train the SAE. However, it is also
long enough to exhibit temporal musical evolution which
we are hoping the SAE will learn and eventually add to
the feature representation of each song for more accurate
classification.

4.3.2 Chroma Features

As a comparison, a parallel analysis was done using chroma
spectrum features. Chroma features collect spectral energy
from each semitone in each octave and combine them into
one spectral bin per semitone. They are a convenient way
to spectrally represent music, they compress the spectral
content into a musically relevant plane. Our chroma ex-
traction begins with the implementation in [9]. The spec-
tral extraction is again windowed by beat length with a
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Figure 2. Illustration showing an overview of our process.
a: original audio file. b: typical beat-matched spectral rep-
resentation either CQT or wrapped Chroma features. c:
patching of spectral representation for input into the SAE.
Each patch is one measure long with 1/8th note hop size. d:
2-layer SAE such as the one we use for feature-extraction.

50% overlap. This results in a chromagram of 12 semitone
frequency bins by 1/4 note temporal bins.

In order to account for any key change that might occur
in the cover version, the chromagram is shifted or “wrapped”
to cover all possible key changes. This is accomplished by
creating a one-semitone shifted chomagram for each pos-
sible key change and then stacking them all together. The
output after stacking is a 144 semitone frequency bin by
1/4 note temporal bin chromagram. Thus when feeding
the chromagram into the SAE, the SAE learns the song’s
chroma features in every possible key at once.

Again, the data is formatted into patches for the SAE.
In order to keep parity between the neural networks, the
chroma features are segmented into patches of 10 spec-
tral frames, corresponding to one measure plus one beat of
the music. Although not as clean a representation as on



measure per patch, this still allows a large amount of data
inputs into the SAE and additional length for temporal mu-
sical evolution.

4.4 Feature Extraction

Each patch is reshaped into a vector and fed into the neural
network. Feature extraction is performed by a two hidden
layer stacked auto-encoder with 1400 input neurons, 500
first layer hidden neurons and 100 output neurons. Each
neuron is fully connected to every other neuron in an adja-
cent layer. There is an additional bias weighting for each
hidden layer that is also connected to every neuron in that
layer as shown in Figure 2.d. Initial forward activations
for each hidden layer are computed independently of the
overall structure. Back-propagation is calculated using the
L-BFGS algorithm [10].

Due to the nature of the data chunks fed into the by the
SAE, we hope to phrase the input so that the model learns
features corresponding to the evolution of the music over
time. This temporal evolution, which is easily detectable
by humans, cannot be replicated by strictly spectral fea-
ture extraction systems such as Chroma analysis and Mel-
Frequency Cepstral Coefficients (MFCC’s). We hope it
also adds meaningful information over a combination of
simply beat-indexed spectral features, as the neural net-
work will learn the patterns in musical change over time,
rather than a rigid index of spectrum vs time.

Furthermore, features learned automatically by neural
networks, specifically SAE’s, have recently shown promise
in musical feature extraction. An SAE similar to the one
in [1] is chosen for this system due to its proven efficacy in
extracting features from audio.

Figure 3 shows a visualization of the first 100 features
of the first hidden layer. There are 500 hidden features in
this layer but only the first 100 are shown for illustrative
purposes.

4.5 Classification

Two distance measurements are then used to evaluate sim-
ilarity of extracted SAE features against ground truth. Dis-
tance is measured between the original song feature vec-
tors and all candidate song feature vectors using two met-
rics: dynamic time warping (DTW) and Euclidean Dis-
tance. Figure 4 shows a visualization on the extracted fea-
ture matrices of three songs for classification.

4.5.1 Normalized Dynamic Time Warping

DTW is an algorithm used to efficiently measure time-
series similarity between two temporal sequences which
may vary in speed or length. It minimizes the effects of
time shifts by allowing an ‘elastic’ transformation of time
series in order to detect similar shapes with different phases
[8]. DTW has been used extensively to measure distance
and align temporally shifted audio, particularly in voice
recognition applications [7] but also in song recognition
systems [3]. Since our output features vectors have differ-
ent lengths, we also normalize the DTW over the sum of
the lengths of the feature vectors being compared. This is
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Figure 3. 10X10 visualization of the first 100 features of
the first hidden layer of the SAE. Each feature is a 180X8
square patch
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Figure 4. Visualization of extracted features for three
songs. The first two graphs show a correctly identified
original/cover pair while the third song is unrelated and in-
cluded for comparison. Columns correspond to extracted
features, rows correspond to time in beats.



done in order to not give preferential weighting to songs
that are of similar lengths.

4.5.2 Euclidean Distance

Euclidean distance is used to compute a“bag-of features”
distance between song feature representations in order to
evaluate the benefit of DTW. The mean of the time-feature
representations is averaged over time to form a single 100-
dimensional feature-vector for each song. Euclidean dis-
tance is then measured between feature vectors between
each original and cover.

5. EXPERIMENTAL RESULTS

The overall results show a maximum classification accu-
racy of 13.75%, or 11 correctly identified pairs out of 80
for both types of spectral analysis as shown in Figure 5.
DTW gives better results than bag of features for both as
well, indicating time alignment of the extracted features
does provide significant benefits. Although it is not as high
as the DTW, the bag of features classification shows a bet-
ter performance for extracted features of chroma spectral
analysis. This indicates that chroma features may contain
more useful spectral data for classification to be fed to the
neural network.

1/2 Note Patch Overlap Accuracy
DTW Bag of Features

CQT 13.75% 7.5%
Chroma Features 13.75% 10%
Random Guess 1.25% 1.25%

Figure 5. Results for our system using both Chroma and
CQT spectral data with a 1/2 note patch overlap. Results
are calculated using DTW similarity and bag of features
euclidean distance similarity.

Additional tests were performed using smaller patch hop
sizes to train and classify the data which seemed promis-
ing, but were not completed due to CPU and hard disk pro-
cessing restraints. For example, the same experiment as
above was run using 1/8th note patch hop size and chroma
feature extraction. This hop size results in four times as
many output features as using a 1/2 note patch hop size.
Bag of words results for this test showed 17.5% accuracy
or 14 correctly classified songs out of 80. The result actu-
ally is better than DTW for a corresponding analysis with
smaller hop size. The DTW calculation for 1/8th note hop
size and chroma features could not be calculated due to
time constraints. DTW comparison between one cover
song and the entire song set took approximately one hour,
depending on song length. However, when extrapolating
the DTW improvement over bag of words for larger patch
size to the bag of words results for the smaller hop size, we
would expect an accuracy in the range of 19% percent or
15 correctly classified songs out of 80.

An overall results matrix is shown in Figure 6. The rows
correspond to original songs while the columns correspond

to cover songs. Green indicates a higher similarity while
red indicates a lower similarity. 100% classification would
show solid green values down the diagonal of the matrix
from top left to bottom right. Although there are some
clusters of green around the diagonal, the more prevalent
trends seem to be that certain rows or columns are clas-
sified as being closer to many of the songs, while other
rows or columns are classified as being further from a large
group of the songs. For example the strong red column
shown in the figure corresponds to the cover song “Happi-
ness is a Warm Gun” by Tori Amos. This song was judged
as being less similar to all the songs in the cover set than
any of the other songs tested.

Although our methodology does provide significantly
better results than random guessing, they are far below the
state of the art for this dataset of 67.50% [4].

Figure 6. Color coded results matrix for the CQT DTW.
Rows correspond to original songs and columns corre-
spond to cover songs. Green indicates a higher similarity
while red indicates a lower similarity.

6. CONCLUSIONS AND FUTURE WORK

In this paper we presented and tested a novel system for au-
tomatically classifying cover songs based on spectral anal-
ysis and automatic feature extraction using a stacked auto-
encoder. We used two different spectral analyses, a CQT
and wrapped chroma features, to extract features and two
different classifiers, DTW and bag of features, to analyze
the results. Although our results are far below the current
state of the art there are many avenues for improval.

The first would be to test various window/hop size com-
binations for both the spectral analysis and the patches. As
mentioned in the Results section, additional testing showed
promise for smaller patch hop sizes and larger spectral win-
dow sizes, allowing bag of words with a smaller patch hop
to actually outperform DTW with a larger patch hop.

Another future line of work will be to analyze the re-
sults matrix in Figure 6 to determine any possible trends
between highly similar songs and highly dissimilar songs.

Another future line of work would be to implement some
kind of song part extraction system before the input to our
system, in order to hopefully extract the chorus of the song.
It has been mentioned in the introduction that the chorus
of the cover song and original song are more often than
not the most similar parts of the songs. Therefore it would



stand to reason that comparing song choruses would yield
a better match than comparing the entire song files. This
would have the added benefit of compressing data along
the time axis for faster calculation.

Finally, we would like to experiment with different neu-
ral networks both size of hidden layers and in depth. We
believe that a deeper neural network will be able to extract
more abstracted and relevant features.
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