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ABSTRACT 

Automatic Chord Recognition can be described as the 

task to divide an audio file containing music, into frames 

and then assigning each frame a chord label according to 

the analysis of the content. Chord recognition can be very 

advantageous for a number of other applications involv-

ing music information retrieval e.g. Automatic Music 

Transcription. Most Automatic Chord Recognition algo-

rithms implement Chroma (or Pitch Class Profile) Fea-

ture Extraction, Pre-Filtering, Pattern Matching and Post-

Filtering, however, there is limited understanding in the 

development and optimization of these processes and the 

variables involved in their computation. The objective of 

this paper is to analyze current developed Automatic 

Chord Recognition Systems, perform a systematic evalu-

ation to analyze the different stages of the typical system, 

experiment with combinations of different methods and 

variables in order to come up with improvements. Our 

aim is to better understand each stage of the system and 

propose new directions to potential improvements. In this 

work, the system built uses Chroma features for the fea-

ture extraction and Hidden Markov Models (HMM) for 

the Pattern Matching in a supervised training environ-

ment. 

1. INTRODUCTION 

Chords are defined by the occurrence of 3 or more har-

monically related musical notes played either simultane-

ously or in quick succession (arpeggio). Chords define 

the fundamental structure of the tonal system in western 

music, therefore the ability to detect them can be very 

valuable for a variety of applications in music infor-

mation retrieval. 

 

The motivation to develop automatic chord recognition 

algorithms comes from the fact that although the task is 

not very difficult for trained musicians, it is time consum-

ing, repetitive and almost impossible to label the entire 

vast database of songs one by one. Furthermore, the re-

sults can assist in music information retrieval tasks such 

as: genre classification, cover song identification, music 

structure analysis, music transcription, etc.   

 

Since there are a total of over 100 different existing 

chords, the task can become quite complex and therefore, 

typically only the 12 major and 12 minor triads are con-

sidered. Some systems utilize a 25th ‘no-chord’ element 

in their defined vocabulary to detect frames without any 

harmonic content.  

 

Using predefined templates for chord recognition can be 

a very time consuming task as it required manual annota-

tion of the chord labels. In this work, we utilize HMMs in 

a supervised training environment to eradicate the need 

for manual annotations. This approach can also be used to 

detect chords other than the 24 majors and minors. 

 

Our work is inspired from Bello and Pickens [1] where 

they also used Hidden Markov Models with the Expecta-

tion Maximization for the task of chord recognition. They 

utilized concepts in music theory to define the transition 

matrix based on the key distance in a circle of fifths. 

 

2. SYSTEM FRAMEWORK 

A typical chord recognition system consists of four stag-

es: feature extraction, pre-filtering, pattern matching and 

post-filtering. This is shown in Figure 1. Feature extrac-

tion transforms an audio file into meaningful representa-

tions. Pre-filtering performs smoothing on features which 

blend a single feature with the nearby context. Pattern 

matching can be carried out by comparing the similarity 

between a feature and a set of pre-defined chord patterns 

and selecting the pattern which is most similar to the fea-

ture. The patterns can be manually defined or learned and 

the similarity can be computed by various distance ap-

proximation methods depending on the implementation 

strategy of the system. 

 
Figure 1 - Typical Chord Recognition System 
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2.1 Feature Extraction 

An audio file contains a large set of music information 

such as: melody, harmony, beat, tempo, timbre of differ-

ent instruments, dynamics of the sound, etc. For a specif-

ic music processing task, only some of this information 

is relevant and useful. Therefore we need to select the 

most important information related to the specific task. 

Usually we name this processing stage as feature extrac-

tion, being the procedure of transforming an audio file 

into a musically meaningful representation which keeps 

the most task-related musical properties while suppress-

ing other unrelated information. At the same time, the 

form of the representation should be appropriate for the 

next processing stage. 

For our tasks of identifying chords, we need to extract 

audio features that emphasize on the tonal structure and 

the musical properties of the audio file such as: chord 

progressions, melodies, component notes of a chord and 

its harmonics. A good feature should be able to capture 

the required music properties and also be invariant to 

some unrelated properties such as tempo and timbre. 

This is beneficial to us because it can allow accurate 

chord detection of different interpretations of a music 

piece played by different instruments (and hence, differ-

ent timbres) at different speeds (different tempo). 

Since a chord itself can be fully determined by its com-

ponent notes, theoretically if the notes are known, the 

chord could be identified. Thus the capture of notes plays 

a crucial role in the feature extraction stage. Moreover, it 

is better to use pitch class instead of single notes to de-

scribe the form of the chord since human beings’ percep-

tion of chords is irrelevant to the octave information of a 

note. Therefore our designed features should be able to 

project the information for notes within the same pitch 

class and distinguish the notes in different pitch classes. 

2.1.1 Chroma Features 

Chroma based audio features are a well-established tool 

in processing and analyzing music data and are particu-

larly very suitable for the task of chord recognition.  

As we know that human’s perception of musical notes 

has a certain character: if a note is one or more octave 

higher than another note, then the two notes sound to 

have the same “tone color” but different “tone height”. 

This phenomenon is referred to as octave equivalence in 

music theory. Assuming the musical notes are of equal-

tempered scale, the chroma correspond to the set {C, C#, 

D. . . B} that consists of the twelve pitch classes.  

For example, note A4 denotes the chroma as A and “tone 

height” as the 4th octave. We can reduce the MIDI notes 

from 88 pitches to 12 chroma classes by ignoring the oc-

tave information of the notes and classifying via chroma 

information.  

 

 

Chroma features are very suitable for the task of chord 

recognition. This is because when analyzing a musical 

chord, we are much more interested in the chroma (or 

pitch class) which the note belongs to other than the abso-

lute pitch of that note. For notes sharing the same chroma 

but in different octaves, we treat them as identical when 

considering a component note of the chord. Furthermore, 

different timbre of instruments will yield different yet 

distinctive energy distribution at harmonics, and since the 

energy of a chroma is merged from different pitches cor-

responding to this chroma together, the difference caused 

by timbre is well absorbed by chroma features, thus mak-

ing them robust to the variations of timbre. 

 

The chroma features are in the form of a 12-dimensional 

vector x = (x(1), x(2), . . . , x(12))T, where x(1) corre-

sponds to chroma C, x(2) to chroma C#, and so on. 

Chroma-based features represent the short-time energy of 

the signal in each of the 12 pitch classes. Often these 

chroma features are computed by suitably pooling spec-

tral coefficients obtained from a short-time Fourier trans-

form. Similarly, one can start with the pitch decomposi-

tion mentioned earlier. Then, by simply adding up the 

corresponding values that belong to the same chroma, one 

obtains a chroma representation or chromagram. Some 

systems apply L2 normalization to the resulting vectors.  

 

Logarithmic Compression can be applied during the 

computation of Chroma Features to account for the loga-

rithmic nature of sound intensity in the human auditory 

system. Furthermore, it is also advantageous to us since it 

adjusts the dynamic range of the original signal to en-

hance the clarity of weaker transients (similar to how a 

compressor works). This helps the identification of some 

weak chroma features that were difficult to detect due to 

their low intensities. 

 

Most systems implementing the Chroma Key Feature 

Analysis utilize a frame rate which is significantly faster 

than the rate of chord changes in the audio input. This is 

required for accuracy. However, faster frame rates cause 

the system to be sensitive to noise and transients. To 

counter this problem, pre-filtering can be used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

For demonstration, we use an audio recording of a piano 

playing the chromatic scale and generate short time 

chroma frames (as columns). The figure below shows the 

spectrogram of the original wav file and its chromagram 

(on dB magnitude scale). A default value of 2048 was set 

for the ‘fftlen’. 

 

 
Figure 2 - Chromagram of the Chromatic Scale 

In order to precisely identify chord boundaries, the frame 

rate of the chroma features must be faster than the rate of 

chord changes in the music. Using a longer window ex-

aggerates the influence of transient noise and the disad-

vantage of using a short window is that the frames of the 

resulting chromagram are independent of the long term 

trend of the signal and respond to local changes, therefore 

becoming sensitive to transients and noise in the signal. 

To cope with this problem, pre-filtering is applied prior to 

pattern matching using a low pass filter. This technique 

improves pattern matching because it minimizes the ef-

fect of transients and noise in the signal by smoothing the 

features across neighboring frames.  

 

2.2 Pattern Matching 

 

After converting the audio file into musically meaningful 

audio features, we now pass these features into the chord 

recognition module which automatically classify the fea-

ture vectors with respect to given chord labels. The chord 

recognition module assigns a chard label to each feature 

vector. 

 

In template based methods, first, pre-computed feature 

templates are defined that serve as chord templates. The 

templates can be defined in various ways (some of which 

are covered in this paper). Next, we need to find a dis-

tance measure between features and the pre-defined tem-

plate and lastly, we assign the chord label by selecting the 

one which results in the minimum distance to the given 

feature.  

 

 

2.2.1 Cyclic Shift 

 

A common technique used in template sets is the Cyclic 

Shift. For each of the template sets, we only set two tem-

plates instead of setting all templates. 

We set one for C and the other for Cm, and denote them 

as TC and TCm. The templates for other major triads are 

computed by cyclically shifting TC, and other minor tri-

ads are computed by cyclically shifting TCm. The reason 

of involving cyclically shift is to utilize the characteristics 

of the chords. Since the musical interval between the 

third and root, fifth and root are always fixed for the same 

type of chord, one can derive the same type of the chords 

by first changing the root note and then make sure the 

third and fifth note from the musical interval. Therefore, 

we can derive the templates for the same type of chords 

by cyclically shifting the position of the notes. 

2.2.2 Binary Templates 

 

A binary chord template is the simplest and one of the 

most popular chord models. This deterministic chord 

model is manually generated based on knowledge of the 

notes used in musical chords. In a binary chord template 

vector, each component corresponding to a chord-tone 2 

is set to 1, and the other components are set to 0. While 

some systems use variations of the binary chord template 

that incorporate information about higher harmonics pro-

duced by each chord-tone, recent studies have shown that 

simple binary chord templates are sufficient to obtain a 

good level of accuracy. For example, C is composed by 

the note C, E and G; Cm is composed by C, D# and G. 

While designing the templates in this method, for every 

given chord, we only consider the component notes of 

chord and totally discard other non-component notes. 

Thus it is reasonable to involve a binary setting since a 

note is either a component or a non-component one. 

Each template in the set is a 12-dimensional binary vector 

with three entries equal to one and other entries equal to 

zero. The three non-zero entries correspond to the three 

component notes of a chord.  

 

For example, the binary template corresponding to C ma-

jor (C, E, G) is given by: 

 

TC = (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0) 

 

And the binary template corresponding to C minor (C, 

D#, G) is given by: 

 

TCm = (1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0) 

 

The advantage of the binary setting is its simplicity and 

efficiency. In contrast, the simplicity also leads to a limi-

tation: it considers only the very ideal instance of a chord 

which works theoretically. However in practice, the in-

tensity of the three component notes may not be exactly 

the same but very different. Also, it ignores too much in-

formation, for instance, it totally disregard the non-



  

 

component notes, which may contribute to form the pat-

tern of a chord. 

2.2.3 Probabilistic Chord Models 

 

Sophisticated chord models are created by defining prob-

ability distributions for each chord class. A popular 

choice is the multivariate Gaussian distribution. In some 

systems, the Gaussian chord models are defined manually 

as with binary templates. More commonly, the distribu-

tion parameters are estimated from labeled data. 

More precise chord models in the form of Gaussian mix-

ture models (GMM) are sometimes constructed instead of 

single Gaussian models. Such models use multiple 

Gaussian distributions to represent each chord. Different 

components represent more nuanced instantiations of 

each chord in the training data, producing a more precise 

fit. This comes at the cost of requiring more sophisticated 

training therefore requiring more computation power.  

 

2.2.3.1 Hidden Markov Models  

 

A Hidden Markov model is a statistical model in which 

the system being modeled is assumed to be a Markov 

process with hidden states. The output for each state cor-

responds to an output probability distribution. We can 

implement HMMs in the task of automatic chord recogni-

tion by considering chords as a hidden state in HMM and 

the features as observations. An HMM can be represented 

by its: initial probability, observation probability and 

transition probability. Initial probability is typically set to 

1/24 (in a 24 chord recognition task) to give every chord 

a fair chance. The computed feature vectors serve as the 

observations and the transition probability is trained from 

the training data.  

 

 
 

A single Gaussian in 12 dimensions is typically used to 

model the chroma vector distribution for each state. The 

Gaussian model is described by its mean vector and co-

variance metric.  

 

The transition probability matrix describes the first order 

temporal relationships between the chord models. Each 

element of the matrix represents the probability of a 

chord switching to another.  

 

 

 

 

 

2.3 Post-filtering 

 

The post-filtering stage shown in Figure 1 is used to 

smooth the sequence of predicted chord labels over time, 

thereby minimizing the number of false chords that only 

last for a small number of frames. Such misdetections can 

be caused by short bursts of noise, which are very com-

mon in real music signals. In most systems, post-filtering 

is performed with a Viterbi decoder, while some systems 

based on chord templates use a median filter instead.  

 

Once the initial probabilities, transition probabilities, ob-

served probabilities and mean vector and covariance ma-

trix for each state are learned, the Viterbi algorithm is ap-

plied to the model to find the optimal path. According to 

Sheh and Elis (2003) [2], “The output of the Viterbi algo-

rithm is the single state path labeling with the highest 

likelihood given the model parameters”. 

 

The Viterbi algorithm is used to decode the hidden states 

of chords given the sequence observed feature vectors. 

 

3. EXPERIMENTS 

We evaluate the system variations using the well-known 

Beatles data set, 180 annotated songs from 12 Beatles al-

bums (containing 13 discs). The ground truth chord anno-

tations of the songs are hand labeled and provided by 

Christopher Harte. The evaluations are performed on 12 

major, 12 minor and a no-chord detection task. 

 

Kevin Murphy's Wonderful HMM Toolbox was used in 

HMM implementation, in particular, the “gaussi-

an_prob” and “viterbi_path” functions were utilized.  

 

Out of the 180 songs, 141 were used for the training and 

the remaining 39 were used for testing.  

 

 

 
Figure 3 – Applying Viterbi Algorithm 

 

http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html


  

 

 
Figure 4 – Ground Truth Comparison 

 

Figures 3 and 4 show the results obtained using the song 

“Come Together” as input.  

 

Overall recognition accuracy for the entire testing set was 

57.7%. 

 

4. CONCLUSION 

Experiments show that using Chroma Features with Hid-

den Markov Models in a supervised training environment 

can be used to solve the task of Automatic Chord Recog-

nition. The greatest advantage of using HMMs is the fact 

that manual annotations are not required. 

 

Although the recognition accuracy is not high enough at 

the moment for useful applications such as Automatic 

Transcription, we hope to improve these results in the fu-

ture. 
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