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ABSTRACT 

One enduring challenge facing the MIR community rests 
in the (in)ability to enact measures capable of modelling 
perceptual musical similarity.   

In this paper, we examine techniques for assessing 
musical similarity. More specifically, we explore the no-
tion of designing a system capable of modeling the subtle 
nuances intrinsic to particular performances. Presently, 
the pervading method for establishing an indication of 
musical similarity is via the Mel Frequency Cepstral Co-
efficient.  

However, some de-facto MFCC methods jettison per-
taining temporal information with first moment calcula-
tions, frame clustering, and probability models. This dis-
carded information has subsequently been shown to be of 
critical relevance to musical perception and cognition. To 
this end, we elucidate the fundamental need for the inclu-
sion of temporal information within a similarity model.  

We propose a novel content-based approach empha-
sizing the sequential repetition of perceptually relevant 
expressive musical features and compare with results ob-
tained from several instantiations of spectral-based 
MFCC methods. 

1. INTRODUCTION 

1.1 Perception 

How can we define music similarity? Such a subjective 
and abstract idea is challenging to articulate. Colloquially 
speaking, music similarity references a laundry list of no-
tions. From performance style to rhythmic complexity, 
perhaps harmonic progression or melodic variation, quite 
possibly timbral content and tempo; and the list goes on. 
Still, behind this ambiguity, we can be sure that the pith 
of any similarity judgment is rooted in cognition.  

In order to conceive an effective computational model 
of what music similarity is, human cognition and percep-
tion must be taken into consideration. What information 
is essential to our formation of complex auditory scenes 
capable of affecting temperament and disposition?  

Further exploration into these questions will inevita-
bly bring about a richer and more perceptually relevant 
computational model of music. Attempting to actualize 
machines capable of auditioning music similar to humans 
can only enhance our endeavor of understanding what it 
means to hear music.  

 

1.2 Motivation 

Sound has always been an integral component in the suc-
cessful proliferation of our species. Our auditory systems 
have evolved over hundreds of thousands of years with 
specific temporal acuities [35]. For instance, sudden on-
sets of rapidly dynamic sounds trigger feelings of anxiety 
and unpleasantness [11]. Our brains are hardwired to in-
terpret expeditiously occurring patterns of sound as indic-
ative of dangerous or threating circumstances [14]. Sensi-
tivities to temporally fluctuating aural information has 
thus proven beneficial to our survival [5].                                                                                                                        

We must therefore recognize the importance that tem-
poral information might play in our perception of music; 
a phenomenon based entirely in and of sound. Rhythm 
organizes the movement of musical patterns linearly in 
time and repetitive sequences, absolutely dependent on 
temporal relationships, are vital for perceived musical 
affect [15]. In fact, sequential repetition has been shown 
to be of critical importance for emotional engagement in 
music [28]. The perceptual bases of musical similarity 
judgments correlate strongly with temporal tone patterns 
and spectral fluctuations of said tones through time 
(ASDR) [13], while significant musical repetitions are 
crucial to metrical and contrapuntal structure [32].     

2. “BAG-OF-FRAMES” 

2.1 Rationale  

Mel Frequency Cepstral Coefficients are standard operat-
ing procedure for speech processing. They essentially 
present the spectral shape of a sound. Through some 
basic domain manipulation and a Fourier-related trans-
form (DCT), the MFCC can drastically reduce the overall 
amount of raw data, while maintaining the information 
most meaningful to human perception (i.e. Cepstrum is 
approximately linear for low frequencies and logarithmic 
for higher ones) [24]. However, speech and music, while 
similar in certain communicative aspects, differ widely in 
most dimensions [21]. So how has the MFCC become the 
leading contender to model our music?  

The MFCC is a computationally inexpensive model of 
timbre [33]. Studies have shown that there is a strong 
connection between perceptual similarity and the (mono-
phonic) timbre of single instrument sounds [17]. Poly-
phonic timbre has also been shown to be perceptually 
significant in genre identification and classification [12]. 
However, most MFCC models disregard temporal order-
ing, they’re static. They describe the audio as a global 
distribution of short term spectral information [3], much  © Steven Crawford. 
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like a histogram would describe the distribution of colors 
used in a painting. 

2.2 Evolution  

Initially proposed by Jonathan Foote in 1997, use of the 
MFCC as a representative measure of musical similarity 
[10] has seen several innovative modifications. Refining 
Foote’s global clustering approach, Logan and Salomon 
propose a localized technique where the distance between 
two spectral distributions (mean, covariance, and cluster 
weight) is seen as a similarity measurement and comput-
ed via Earth Movers Distance (EMD) [19]. EMD evalu-
ates the amount of work (!"#$%	) required to convert one 
model into the other as well as the cost of performing said 
conversion ('"#$%). Here, work is defined as the symme-
trized KL-divergence [31].  
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The next prominent contribution, set forth by Aucou-
turier and Pachet, uses a Gaussian Mixture Model 
(GMM) in synchrony with Expectation Maximization 
(initialized by k-means) for frame clustering. Ultimately, 
a song is modelled with three 8-D multivariate Gaussians 
fitting the distribution of the MFCC vectors. Similarity is 
assessed via a symmetrized log-likelihood of (Monte-
Carlo) samples from one GMM to another [2].   
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Mandel and Ellis simplified the aforementioned ap-
proach and modelled a song using a single multivariate 
Gaussian with full covariance matrix [20]. The distance 
between two models, considered the similarity meas-
urement, is computed via symmetrized KL-divergence. 
In the following equation, DE,F are Expectation Maxim-
ized parameter estimations of the mean vectors and full 
covariance matrices [23]. 
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2.3 Glass-Ceiling  

The MFCC-based similarity model has since seen several 
parameter modifications and subtle algorithmic adapta-
tions, yet the same basic architecture pervades [3]. Front 
end adjustments (e.g. dithering, sample rate conversions, 
windowing size, etc.) have been implemented in conjunc-
tion with primary system variations (e.g. number of 
MFCC’s used, number of GMM components to a model, 
alternative distance measurements, Hidden Markov Mod-
els over GMM’s, etc.) in an attempt towards optimization 
[1].  

Nonetheless, these optimizations fail to provide any 
significant improvement beyond an empirical glass-

ceiling [4] [25]. The simplest model (single multivariate 
Gaussian) has actually been shown to outperform its 
more complex counterparts [20]. It would appear that re-
sults from this approach are bounded which suggests the 
need for an altogether new interpretation.  

Moreover, bag-of-frames systems inadequately at-
tempt to model perceptual dependencies as statistical oc-
currences. It is quite possible, even likely, that a frame 
appearing with very low statistical significance contains 
information vital for perceptual discernment. Hence, this 
engineering adaptation towards modeling human cogni-
tion is not ideally equipped for polyphonic music and fu-
ture enhancements will ultimately result from a more 
complete perceptual and cognitive understanding of hu-
man audition [3].  

3. IMPLEMENTATION 

3.1 Progression 

The following sections will explore the implementations 
and results of three MFCC based bag-of-frames similari-
ty systems. Beginning with a wholly static instantiation 
(i.e. zero temporal or fluctuating spectro-temporal infor-
mation), we proceed to system instantiations incorporat-
ing ΔMFCC’s and fluctuation patterns as enhancements 
to the standard MFCC’s. As a novel and contrasting per-
spective, the section closes with our temporally depend-
ent sequential model. 
3.2 Single Multivariate Gaussian 

In the initial, completely static model, we segment the 
audio into 512-point frames with a 256-point hop (equat-
ing to a window length of 23ms at a sample rate of 
22050Hz) [20]. From each segmented frame, we extract 
the first 20 MFCC’s as follows: 

I. Transform each frame from time to frequency 
via DFT [RE(S)], where 7E T  is our framed, 
time based signal, h(n) is an N sample long 
Hanning window, and K is the DFT length.  
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II. Obtain the periodogram-based power spectral 
estimate [+E(S)] for each frame. 
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f
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III. Transform the power spectrum along the fre-
quency axis into its Mel representation consist-
ing of triangular filters [M(f)], where each filter 
defines the response of one band. The center fre-
quency of the first filter should be the starting 
frequency of the second, while the height of the 
triangles should be 2/(freq. bandwidth). 
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IV. Sum the frequency content in each band and take 
the logarithm of each sum. 

V. Finally, take the Discrete Cosine Transform on 
the Mel value energies, which results in the 20 
MFCC’s for each frame. 

Next, we compute a 20x1 mean vector and a 20x20 covar-
iance matrix and model a single multivariate Gaussian 
from the data [20]. This process is repeated over every 
song in the database while a for loop iterates over each 
model, calculating the symmetrized KL-divergence. 

3.3 Two Multivariate Gaussians 

This model, proposed by de Leon and Martinez, attempts 
to enhance baseline MFCC performance with the aid of 
some dynamic information (i.e. its time derivative, the 
ΔMFCC) [7]. The novelty here is in the modelling ap-
proach towards the ΔMFCC’s. As opposed to directly ap-
pending the time derivatives to the static MFCC infor-
mation, an additional multivariate Gaussian is employed 
[7].  

The motivation here being the simplification of dis-
tance computations required to ultimately quantify simi-
larity (i.e. symmetrized KL-divergence). For a d-
dimensional multivariate normal distribution (N) de-
scribed by an observation sequence (x), a mean vector 
(µ), and a full covariance matrix (Σ), 
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there exists a closed form KL-divergence of distributions 
p and q [27]: 
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where Σ  now denotes the determinant of the covariance 
matrix. 

In this approach, audio is segmented into 23ms frames 
and the first 19 MFCC’s are extracted in the same fashion 
as previously described. A single multivariate normal dis-
tribution is then modelled on the 19x1 mean vector and 
the 19x19 covariance matrix. The ΔMFCC (d) at time (t) 
is then computed from the cepstral coefficient (c) using a 
time window (Θ). 
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An additional Gaussian is modelled on the ΔMFCC’s 
and the song is ultimately characterized by two single 
multivariate distributions. Symmetrized KL-divergence is 
used to compute two distance matrices; one for the 
MFCC’s and one for the ΔMFCC’s. Distance space nor-
malization is applied to both matrices and a full distance 
matrix is produced as the result of a weighted, linear 
combination of the two [7]. 

3.4 Fluctuation Patterns 

To augment the standard MFCC effectiveness, Elias 
Pampalk suggests the addition of some dynamic infor-
mation correlated with the musical beat and rhythm of a 
song [26]. Fluctuation patterns essentially attempt to de-
scribe periodicities in the signal and model loudness evo-
lution (frequency band specific loudness fluctuations over 
time) [25]. To derive the FP’s, the Mel-spectrogram is 
divided into 12 bands (with lower frequency band em-
phasis), and a DFT is applied to each frequency band to 
describe the amplitude modulation of the loudness curve 
[25]. The conceptual basis of this approach rests on the 
notion that perceptual loudness modulation is frequency 
dependent [26]. Implementation of the system is as fol-
lows: 

I. The Mel-spectrum is computed using 36 filter 
banks and the first 19 MFCC’s are obtained 
from 23ms Hanning windowed frames with no 
overlap.  

II. The 36 filter banks are mapped onto 12 bands. 
Fluctuation patterns are obtained by computing 
the amplitude modulation frequencies of loud-
ness for each frame and each band via DFT. 

III. Finally, the song is summarized by the mean 
and covariance of the MFCC’s in addition to 
the median of the calculated fluctuation pat-
terns. 

3.5 Sequential Motif Discovery 

Attempting to coalesce spectrally extracted features with 
temporal information, our approach characterizes a song 
by frequently recurring chronological patterns (motifs). 
These patterns are encoded into strings of data describing 
extracted features and serving as a stylistic representation 
of a song. The encoded string format enables us the luxu-
ry of sequence alignment tools from bioinformatics. 
Similarity is quantified as the amount of overlapping mo-
tifs between songs. The system is composed of three ma-
jor units; audio segmentation, feature extraction, and 
quantization / pattern analysis [30]. 

3.5.1 Audio Segmentation 

In this module, with the aid of an automatic beat tracking 
algorithm, we segment the audio into extraction windows 
demarcated by musically rhythmic beat locations [9]. 
Each window subsequently consists of the audio interval 
between two beat locations [30].  

I. Estimate the onset strength envelope (the ener-
gy difference between successive Mel-spectrum 
frames) via:  

a. STFT 
b. Mel-spectrum transformation 
c. Half-wave rectification 
d. Frequency band summation 

II. Estimate global tempo based on onset curve 
repetition via autocorrelation.  



  
 

III. Identify beats as the locations with the highest 
onset strength curve value. Ultimately, the beat 
locations are decided as a compromise between 
the observed onset strength locations and the 
maintenance of the global tempo estimate [9]. 

3.5.2 Feature Extraction 

Essentially, each extraction window serves as a “temporal 
snapshot” of the audio, from which quantitative meas-
urements corresponding to perceptually relevant (loud-
ness, vibrato, timing offsets) features are extracted. Each 
of these features is chosen in hopes of a qualitative repre-
sentation of genre and/or expressive performance style 
(e.g. the abiding loudness levels pervading rock and hip-
hop, vibrato archetypical of the classical styles, the syn-
copations of jazz, reggae, and the blues). 

• Loudness here [áà] is defined as the sum of all 
constituent frequency components in an STFT 
frame [Râ(8, S)] and computed as the time aver-
age (i.e. the total number of frames in the extrac-
tion window, M) of logarithmic perceptual loud-
ness.  
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• The vibrato detection algorithm (an instantiation 
of McAulay-Quatieri analysis) begins by track-
ing energy peaks in the spectrogram. From these 
peaks, several conditional statements are im-
posed onto the data. Upon conditional satisfac-
tion, vibrato is recognized as being present in the 
extraction window. In short, the algorithm be-
gins from a peak frequency frame(i)/bin(m) lo-
cation [i.e. f(i,m)], and compares values in sub-
sequent frame/bin locations [f(j,n)] in an attempt 
to form a connection path (rising or falling) 
identifiable as vibrato. A more detailed algo-
rithmic explanation can be found in [22]. 

• Timing offsets are identified as deviations be-
tween the aforementioned derived beat locations 
and significant spectral energy onsets. They 
symbolize the superimposition of rhythmic vari-
ations upon the inferred beat structure.  Each ex-
traction window is segmented into four equal-
length evaluation sections. The upbeat is identi-
fied by the left, outermost edge, while the 
downbeat is located on the boundary shared be-
tween the second and third sections. Onsets lo-
cated in either of the first two sections are corre-
lated with the upbeat, while onsets occupying ei-
ther of the latter sections are downbeat associat-
ed. The timing offset is seen as the Euclidean 
distance from the up(down) beat location to the 
onset. A cursory illustration can be seen in 
Fig.1, while a comprehensive description of the 
implementation can be found in [30].  

3.5.3 Quantization / Pattern Analysis 

In this module, the extracted features are discretized into 
symbolic strings and segmented further to facilitate motif 
discovery. Additionally, a dimensionality compression 
algorithm converts our symbol strings into the 1-D se-
quences required by our bioinformatics alignment tools. 

• To produce the quantization codebook, we take 
our continuous feature sequence s(n), sort the 
values in ascending order s'(n), and apportion 
them into Q equal sets. The max/min values of 
each set dictate the thresholds for each quanti-
zation division.1 The discretized feature se-
quence is equal in length to the number of ex-
traction windows obtained in the audio segmen-
tation module.         

• A sliding mask M is applied to the feature se-
quence, creating multiple sub-sequences, expe-
diting pattern analysis.2 The sliding value is 1 
data point and the overlap value of each sub-
sequence is 3 data points. 

• To convert our 3-D feature value strings into 1-
D symbols while maintaining chronological 
evolution, the following transform (where d is 
the feature dimension and R$ is the quantized 
value of said data point)  is used: 
 
R$E = ! − 1 - + R$																																								(11) 
 
 

 
Fig.1 Measurement of timing offsets. The delayed onset 
in (a) is given a positive value while the advanced onset 
in (b) is given a negative value [30].  

• At this point, we have, on average, ~10K, 1-D, 
sub-sequences. Here, we use the sequence 
alignment tools of Hirate and Yamana [16]. 
Succinctly, each sub-sequence (of length=M) is 
compared to every other sub-sequence, to veri-
fy if and when the pattern recurs. If the motif 
recurs more than a minimum threshold, this 
motif is accepted into the motif bank. The motif 
bank is the end model of the song and corre-

                                                
1In our implementation, we set Q to 3 as a compromise between compu-
tational efficiency and satisfactory data representation.  
2 Our sliding mask window M is set to 4 extraction windows. 



  
 

spondence between motif banks could be a sig-
nal of similarity. The algorithm is highly cus-
tomizable, allowing for various support values 
and time span intervals.  

4. EVALUATION 

4.1 “Ground-Truth” 

Musical similarity is recognized as a subjective measure, 
however there is consistent evidence signifying a semi-
cohesive similarity experience pervading diversified hu-
man listening groups [6] [19] [26]. This is implicative of 
there being validity in utilizing human listening as an 
evaluation of similarity. Nonetheless, objective statistics 
are revealing and must also be incorporated into the sys-
tem appraisals.   

To provide an equitable qualitative assessment of the 
systems’ performance, we adopt a multifaceted scoring 
scheme comprising three branches: 

I. Human Listening (BROAD score)3 
II. Genre Similarity (Mean % of Genre matches)4  

III. F-measure over top 3 candidates3 

4.2 Database and Design 

The musical repository used in this research consists of 
60 songs spanning the following genres; Rock, Sing-
er/Songwriter, Pop, Rap/Hip-Hop, Country, Classical, 
Alternative, Electronic/Dance, R&b/Soul, Latino, Jazz, 
New Age, Reggae, and the Blues. A geometrically em-
bedded visualization of a portion of the artist space ac-
cording to their Erdös distances5 can be seen in Fig.2. 
The pool of 20 participants engaging in the listening ex-
periments spans multiple contrasting musical preferences, 
age groups, and backgrounds. 

 
Fig.2 Erdös distance, a function of transitive similarity, 
evaluates the similitude of two performers (A&B) as the 
number of interposing performers required to create a 
connection from A to B [8]. Above orientation derived 
via Multidimensional Scaling, optimized by gradient de-
scent..6    

                                                
3Adopted from MIREX. See [29] for a detailed explanation.  
4Genres are allocated according to iTunes® artist descriptions.  
5For a complete description of the Erdös measure, see [8].  

 

 
Value Detail Context 

4 Highly 
Similar 

However the query is perceived (e.g. enjoyable or not), the 
candidate is highly likely to be perceived the same way. 

3 Similar However the query is perceived, the candidate is moderate-
ly likely to be perceived the same way. 

2 Indistinct The query and candidate form no relation to one another. 

1 Dissimilar However the query is perceived, the candidate is highly 
unlikely to be perceived the same way. 

Table 1. BROAD scale used by listening participants. 

 
The database is analyzed using each of the 4 systems 

and distance matrices are computed correspondingly. 
Each song from the set is used, in turn, as a seed query. 
Following the query (each listener hears 3 seed queries in 
total), the participants hear the top candidate from each 
system (i.e. each listener hears a total of fifteen, 30-
second song snippets). The seed queries presented to the 
participants were randomized, as was the order in which 
the top system candidates were played. In the instance 
that multiple systems returned the same top candidate, the 
second candidates were used instead.  

For homogeneity, the chorus, ‘hook’, or section con-
taining the main motive of the song was used as playback 
to the participants. Each participant was asked to rate the 
candidate return from each system, for each query ac-
cording to Table 1. 

4.3 Results 

In regards to our BROAD scores, the performance of 
each algorithm is established as the mean value rating 
computed over every top candidate return from each sys-
tem. Performance according to this metric is displayed in 
Fig.3. 
 

 
Fig.3 Average assessment for each system, computed 
across all listening participants. The red arrows indicate 
a 95% confidence interval, calculated utilizing the com-
pensatory formula for sample size less than 30 (T-score).     

System performance according to genre similarity is 
computed as the ratio of seed genre to candidate genre 
matches to the top candidate returned. This metric is av-
eraged for all seed queries over the entire database. Per-
formance according to this metric is displayed in Fig.4. 

F-measure, the harmonic mean of two classic infor-
mation retrieval metrics (precision and recall), communi-



  
 

cates information regarding the accuracy and propriety of 
returned responses to a given query. To qualify as a rele-
vant return item, a candidate must satisfy at least one of 
the following conditions: 

i. Be of the same genre as the seed. 
ii. Be of the same artist as the seed. 

iii. The seed and query share at least one similar 
artist.6  

Our F-measure metric is viewed as the average score 
computed over all possible seed queries. Performance ac-
cording to this metric is displayed in Fig.5.    

 
Fig.4 Average system performance according to genre 
matches between seed query and 1st candidate returns. 

5. CONCLUSIONS  
5.1 Discussion 

We have presented four different approaches towards es-
tablishing a musical similarity estimate and compared 
each approach using three evaluation schemes. While the 
data does carry some implications, we must keep in mind 
that no recommendation system can perpetually placate 
the sentiment of every listener. Anticipating an individu-
al’s musical penchant is a highly variable undertaking, 
regulated by a multitude of psychological, psychoacous-
tic, cultural and social components.  

However, what can be unambiguously interpreted 
from the data is the fact that the inclusion of dynamic, 
temporal information increases system performance. This 
is what we hoped to find. Our lives unfold in time; as 
music is a reflection of the life experience, the pervading 
temporal aspect of its cognition is intuitively observed 
and understood.  

A further curious implication arising from the data 
can be seen with regards to the idea of a ‘genre’. Results 
from the F-measure and human listening are essentially 
congenial, however, this is not mirrored in the genre simi-
larity metric. This might suggest the overwhelming vari-
ability of musical expression has outgrown the classifica-
tion bandwidth of the ‘genre.’ Perhaps a more authentic 
approach at describing (and recommending) similar mu-
sic would be in terms of ‘mood’ or ‘occasion.’ This trend 

                                                
6Artist similarity data used in our measure was extracted from 
Last.fm®.   

can be witnessed at present with companies like Spoti-
fy®, Last.fm®, and Allmusic.com®. 

5.2 Future Trajectory    

At its inception, the sequential motif system was de-
signed with the aim of identifying, quantifying, and ulti-
mately extracting expressive, humanistic lineaments from 
performed music. Upon successful identification and ex-
traction, a myriad of potentialities arises. One of the more 
interesting pursuits being the superimposition of said ex-
tracted features onto a generic MIDI composition with 
the intention of “bringing it to life.” Accurately extracting 
the subtle, expressive nuances intrinsic to a performance 
and mapping them to tractable MIDI parameters could 
reveal a deeper comprehension of human audition. 

We have yet to reach this end, but as an unexpected 
waypoint en-route to our destination, we found that our 
system might be able to offer an additional interpretation 
as to what musical similarity means. Our research into 
perceptually salient feature identification, extraction, and 
quantization is currently advancing.  

 
Fig.5 F-measures of each system. On each boxplot, the 
red line represents the median, the ends of each box de-
note the 25th and 75th percentiles, and the whiskers ex-
tend to the most extreme data points. 
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