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ABSTRACT 

 

One of the most prominent applications of audio signal 

processing in the modern era is speech recognition. When 

devices have the ability to perform tasks based on a user’s 

speech, it greatly increases both the convenience to the user 

and the number of possible functions. For example, speech 

recognition could allow a user to make a memo using their 

voice on a device that previously had no manual keyboard 

input. For this project, the goal is to create a speech 

recognition system that can be interfaced with an embedded 

device. 

 

Index Terms— Speech Recognition, MFFC, ANN, 

Keyword Detection 

 

1. INTRODUCTION 

 

To implement the above application, we first have to 

construct a data acquisition system to record audio data that 

we can analyze. Once we have the input signal, we can split 

it into frames and analyze its features. These features will be 

the input to an artificial neural network that will output the 

spoken command as a text word. If the spoken word matches 

one of our commands, we can make a real world change. For 

example, if the spoken word is “on”, we can turn on an LED. 

 

2. DATA ACQUISITION 

 

In order to analyze speech on any device, we first must 

construct a physical system that allows us to capture real 

world audio data. To do this, a microphone can be attached 

to the system. In this case I will use a MEMS microphone 

because they are the most common and powerful 

microphone type used in embedded speech recognition 

applications. 

  To turn the analog electrical signal from the 

microphone into a digital signal that a computer can read, 

we must send the microphone as an input to an analog-to-

digital converter (ADC). For this project, I have chosen the 

Arduino Due as the microcontroller platform and a digital 

MEMS microphone which outputs a PDM signal. This 

allows us to connect the microphone directly to the Due. 

Additionally, the Due has a microcontroller which is where 

the signal processing will occur. 

 Instead of writing code to be run on the Due, we 

will instead use Matlab’s built-in support package. This 

allows us to write Matlab code and process the data on a 

computer while retaining the ability to have analog inputs 

and outputs from the Due [6]. In this case, we will attach a 

single microphone to the Due which can be read into 

Matlab. We can also access the Due’s built in LED to give 

the user visual feedback to their command. 

 
Figure 1: Hardware Setup 

 

3. FEATURE EXTRACTION 

 

3.1. Windowing 

 

Now that our physical system is in place, we are ready to 

perform signal processing on our speech. The very first step 

is to segment the incoming time-domain signal into frames 

[1]. We can do this by taking only the first M samples where 

M is the window length. We will perform our processing on 

these samples before looking at the next window. 

Additionally, we window these samples using a hamming 

window to reduce the noise generated by the multiplication 

of the window and the samples. 

 

 
 

3.2. Fast Fourier Transform 

 

Now we have our windowed time domain signal, but this 

representation is highly specific and will be difficult to 

compare to other speakers. To generalize the signal more, 

we can move it to the frequency domain by taking the 



Fourier Transform of the windowed signal. Doing this for 

each audio frame will result in a spectrogram, visualized as 

follows: 

  

 

 
 

Figure 2: Visualization of Spectrogram 

 

3.3. Mel-Frequency Filter Bank 

 

Now we have reached a representation that is acceptably 

general, but we can still do better. This spectrogram 

represents all frequencies equally. However, humans do not 

hear all frequencies equally. The first step is to shift the 

frequencies in our spectrogram to a mel scale, which is 

defined as follows [1]: 

 

 
 

 This gives us our mel filter bank. Also note that the 

center frequency of each filter is where the previous filter 

reached zero. We can also use the bandwidth of the filter to 

determine the height of the filter by (2 / bandwidth). Each 

individual filter is multiplied by the spectrogram and the 

results are summed together for the final mel-frequency 

representation [1]. 

 

 
 

Figure 3: Mel Filter Bank 

3.4. Logarithm 

 

Beyond hearing frequencies at different intensities, humans 

also hear sound logarithmically. We can model this very 

simply by taking the logarithm of the value at each mel-

frequency bin. 

 

3.5. Discrete Cosine Transform 

 

One last modification we can make is to take our signal to 

the cepstrum domain instead of the frequency domain. This 

domain will help us become even more general and more 

accurately observe pitch, which will help identify phonemes. 

We can do this by taking the inverse discrete cosine 

transform. The resulting vector is known as the Mel-

Frequency Cepstral Coefficients (MFCC). This feature set is 

very good for representing phonemes [2].   

 

 
 

Figure 4: Visualization of MFCC 

 

4. ARTIFICIAL NEURAL NETWORK 

 

Now that the acoustic signal has been represented as a small 

feature set, we can use that as an input to our neural 

network. A neural network is a set of interconnected nodes 

that approximate the way a human brain thinks. The 

architecture is as follows: 

 



 
Figure 4: Visualization of Neural Network 

 

 Each column is considered to be a layer and each 

circle is a node. In this case, we want each node in the input 

to be given one value of a MFCC coefficient. At each node 

in all the following layers, the value is computed as a 

weighted sum of every node from the previous layer [5]. 

 

 
 

 Also note that after the sum at each node is 

completed, the output is biased and put into a sigmoid 

function to prevent values from getting too small or too large 

that they can no longer be read by the computer [4]. 

 

 
 

Each output node represents one of the possible 

words that the user could have said as well as one node for 

silence (or no spoken words). The final system can be 

visualized as follows: 

  

 
 

Figure 5: Diagram of Implemented Network 

 

4.1. Training the Network 

 

In order for the neural network to produce good results, it 

must be trained. This is accomplished by feeding it a known 

input. Based on the error between the experimental result 

and the known result, all the weights and biases can be 

adjusted to produce a lesser error for future tests. 

 The method by which this backpropagation is 

performed is called gradient descent optimization. Once the 

output of the known input is generated, the error between the 

resulting output and our desired output can be calculated [3].  

 

 
 

 These errors in the output are used to find the 

errors for the previous layer, and so forth. This creates a 

gradient that can be optimized by a new set of weights and 

biases. 

 For this project, I did not create the code to train 

the network manually, but instead used Matlab’s Neural 

Network Toolbox. Training a neural network is very 

computationally expensive and can take many hours to do. 

Therefore it is smarter to use a well-optimized library that 

can produce a great set of weights and biases. 

 Additionally, to create a network that produces 

great results, you need to train it with a set high quality 

recordings. For my training data, I utilized Google’s speech 

command database, which has over 2000 recordings for 

different signal word commands such as “on” or “off” [7]. 

 

4.2. Preparing the Data 

 

The first step to train this data was formatting it properly. 

Matlab’s Neural Network Tool requires two matrices, one 

for the sample inputs and one for the expected outputs of 

those inputs. To do this, I looped through every file in the 

database. At each file, I obtained its first 21 MFC 

coefficients and stored them in the input matrix. At the same 

time, I also placed a 1 in the target matrix for the actual 

word that was spoken in that recording. In this case, the 

target matrix had dimensionality of three by the number of 

samples. The three dimension represented silence, on, or off 

as the guess for the spoken word. 

 Now that the data is properly formatted, we can 

train the neural network. Matlab allows us to easily train our 

network by selecting the inputs, targets, and training 

algorithm from a dropdown menu. Additionally, Matlab 

automatically divides the samples into training, validation, 

and testing groups. In this case, I always specified 70%, 

15%, and 15% respectively. The network was trained using 

gradient descent backpropagation. 

  

5. IMPLEMENATION 

 

Now that the network has been constructed, we can begin to 

use it on real-time input. First we read our analog 

microphone input from the Due into a buffer until we reach a 

window size of 16000 (or one second of audio). This is 

preferred because the network was trained on 1 second long 

recordings at a sampling rate of 16000 Hz. Once we obtain 

our window, we find the MFC coefficients. This resulting 



vector is forward propagated through the network using the 

formula described in section 4. We then can search our 

output vector for the location of the 1. The index of the 1 

tells us which word has been spoken. If the word is found to 

be “on”, we then tell the Due to set the pin connected to the 

LED high. If the word is “off”, the pin is set low. If silence 

is detected, nothing happens. This process is repeated 

indefinitely.  

 

6. RESULTS 

 

The success of this system relies solely on how well-trained 

that neural network is. Therefore, different networks were 

attempted with the following varieties of parameters 

(confusion matrices available in Appendix A): 

 

Parameter System 1 System 2 System 3 System 4 

Number of 

Samples 
3406 406 3406 406 

Number of 

MFFC 
21 101 21 101 

Training 

Method 

Gradient 

Backpropa

gation 

Gradient 

Backpropa

gation 

Bayesian 

Regularizat

ion 

Bayesian 

Regularizat

ion 

Success 

Rate 
75.6% 71.4% 89.3% 97.6% 

  

From these results it is very clear that the most 

important factor in training the network is the training 

algorithm. Gradient backpropagation is the simplest method, 

so it makes sense that a more robust method like Bayesian 

Regularization would generate a more successful network. 

As far as the number of coefficients, it seems to generally 

not be that important, but different values should certainly 

be tested. 

Overall, the system responds fairly well to real 

speaker recordings not in the dataset. The biggest issue with 

this project is that silence is frequently determined to be a 

word. The reason for this is that there were only 6 

recordings of background noise. When using over one 

thousand samples for the words, background noise was 

removed as an option entirely during training. This should 

be a simple fix by obtaining equal amounts of background 

noise recordings for training. 

 

7. FUTURE WORK 

 

The type of Neural Network that I used in this project is the 

most simplistic version possible. There are many types of 

layers and modifications that can improve the performance 

of the network [5]. For example, a recurrent neural network 

would have some memory of past inputs to make better 

decisions on time sensitive matters, like speech. Also, you 

can add more hidden layers or combine multiple neural 

networks for different results. 

 One major obstacle to the performance of the 

system is the fidelity of the input recordings. There are 

several methods to improve the quality. Note that the goal 

here is make the speech recording as close to that of an 

anechoic chamber as possible. Two methods I would like to 

implement in the future are beamforming with a microphone 

array and active noise cancellation. 

 Another area of improvement for this project is 

expanding the functionality of the product. Currently, the 

only tasks the device can perform are turning the LED on or 

off. A good set of expanded tasks to start with may be 

speaker control with volume control, song selection, and 

some kind of audio enhancement DSP. 

 

8. CONCLUSIONS 

 

This paper outlined the steps to create a speech recognition 

system. It starts by converting an acoustic speech system 

into a digital signal via a MEMS microphone. Then the 

signal is windowed and its MFCC values are obtained. This 

feature set is used as the input to an artificial neural network. 

The net outputs a command or silence, and the system 

responds accordingly. 

Voice recognition is an important tool that will 

become more and more common in modern devices. 

Existing products like this project such as the Amazon Echo 

or Google Home prove to be successful and will continue to 

grow in both performance and functionality. 
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10. APPENDIX A 

 

 
 

Figure 6: System 1 Confusion Matrix 

 

 
 

Figure 7: System 2 Confusion Matrix 

 

 
 

Figure 8: System 3 Confusion Matrix 

 

 
 

Figure 9: System 4 Confusion Matrix 
 


