
SPEECH RECOGNITION SYSTEM

Isaac Mosebrook

University of Rochester Department of Audio and Music Engineering

ABSTRACT

One of the most prominent applications of audio signal

processing in the modern era is speech recognition. When

devices have the ability to perform tasks based on a user’s

speech, it greatly increases both the convenience to the user

and the number of possible functions. For example, speech

recognition could allow a user to make a memo using their

voice on a device that previously had no manual keyboard

input. For this project, the goal is to create a speech

recognition system that can be interfaced with an embedded

device.

Index Terms— Speech Recognition, MFFC, ANN,

Keyword Detection

1. INTRODUCTION

To implement the above application, we first have to

construct a data acquisition system to record audio data that

we can analyze. Once we have the input signal, we can split

it into frames and analyze its features. These features will be

the input to an artificial neural network that will output the

spoken command as a text word. If the spoken word matches

one of our commands, we can make a real world change. For

example, if the spoken word is “on”, we can turn on an LED.

2. DATA ACQUISITION

In order to analyze speech on any device, we first must

construct a physical system that allows us to capture real

world audio data. To do this, a microphone can be attached

to the system. In this case I will use a MEMS microphone

because they are the most common and powerful

microphone type used in embedded speech recognition

applications.

 To turn the analog electrical signal from the

microphone into a digital signal that a computer can read,

we must send the microphone as an input to an analog-to-

digital converter (ADC). For this project, I have chosen the

Arduino Due as the microcontroller platform and a digital

MEMS microphone which outputs a PDM signal. This

allows us to connect the microphone directly to the Due.

Additionally, the Due has a microcontroller which is where

the signal processing will occur.

 Instead of writing code to be run on the Due, we

will instead use Matlab’s built-in support package. This

allows us to write Matlab code and process the data on a

computer while retaining the ability to have analog inputs

and outputs from the Due [6]. In this case, we will attach a

single microphone to the Due which can be read into

Matlab. We can also access the Due’s built in LED to give

the user visual feedback to their command.

Figure 1: Hardware Setup

3. FEATURE EXTRACTION

3.1. Windowing

Now that our physical system is in place, we are ready to

perform signal processing on our speech. The very first step

is to segment the incoming time-domain signal into frames

[1]. We can do this by taking only the first M samples where

M is the window length. We will perform our processing on

these samples before looking at the next window.

Additionally, we window these samples using a hamming

window to reduce the noise generated by the multiplication

of the window and the samples.

3.2. Fast Fourier Transform

Now we have our windowed time domain signal, but this

representation is highly specific and will be difficult to

compare to other speakers. To generalize the signal more,

we can move it to the frequency domain by taking the

Fourier Transform of the windowed signal. Doing this for

each audio frame will result in a spectrogram, visualized as

follows:

Figure 2: Visualization of Spectrogram

3.3. Mel-Frequency Filter Bank

Now we have reached a representation that is acceptably

general, but we can still do better. This spectrogram

represents all frequencies equally. However, humans do not

hear all frequencies equally. The first step is to shift the

frequencies in our spectrogram to a mel scale, which is

defined as follows [1]:

 This gives us our mel filter bank. Also note that the

center frequency of each filter is where the previous filter

reached zero. We can also use the bandwidth of the filter to

determine the height of the filter by (2 / bandwidth). Each

individual filter is multiplied by the spectrogram and the

results are summed together for the final mel-frequency

representation [1].

Figure 3: Mel Filter Bank

3.4. Logarithm

Beyond hearing frequencies at different intensities, humans

also hear sound logarithmically. We can model this very

simply by taking the logarithm of the value at each mel-

frequency bin.

3.5. Discrete Cosine Transform

One last modification we can make is to take our signal to

the cepstrum domain instead of the frequency domain. This

domain will help us become even more general and more

accurately observe pitch, which will help identify phonemes.

We can do this by taking the inverse discrete cosine

transform. The resulting vector is known as the Mel-

Frequency Cepstral Coefficients (MFCC). This feature set is

very good for representing phonemes [2].

Figure 4: Visualization of MFCC

4. ARTIFICIAL NEURAL NETWORK

Now that the acoustic signal has been represented as a small

feature set, we can use that as an input to our neural

network. A neural network is a set of interconnected nodes

that approximate the way a human brain thinks. The

architecture is as follows:

Figure 4: Visualization of Neural Network

 Each column is considered to be a layer and each

circle is a node. In this case, we want each node in the input

to be given one value of a MFCC coefficient. At each node

in all the following layers, the value is computed as a

weighted sum of every node from the previous layer [5].

 Also note that after the sum at each node is

completed, the output is biased and put into a sigmoid

function to prevent values from getting too small or too large

that they can no longer be read by the computer [4].

Each output node represents one of the possible

words that the user could have said as well as one node for

silence (or no spoken words). The final system can be

visualized as follows:

Figure 5: Diagram of Implemented Network

4.1. Training the Network

In order for the neural network to produce good results, it

must be trained. This is accomplished by feeding it a known

input. Based on the error between the experimental result

and the known result, all the weights and biases can be

adjusted to produce a lesser error for future tests.

 The method by which this backpropagation is

performed is called gradient descent optimization. Once the

output of the known input is generated, the error between the

resulting output and our desired output can be calculated [3].

 These errors in the output are used to find the

errors for the previous layer, and so forth. This creates a

gradient that can be optimized by a new set of weights and

biases.

 For this project, I did not create the code to train

the network manually, but instead used Matlab’s Neural

Network Toolbox. Training a neural network is very

computationally expensive and can take many hours to do.

Therefore it is smarter to use a well-optimized library that

can produce a great set of weights and biases.

 Additionally, to create a network that produces

great results, you need to train it with a set high quality

recordings. For my training data, I utilized Google’s speech

command database, which has over 2000 recordings for

different signal word commands such as “on” or “off” [7].

4.2. Preparing the Data

The first step to train this data was formatting it properly.

Matlab’s Neural Network Tool requires two matrices, one

for the sample inputs and one for the expected outputs of

those inputs. To do this, I looped through every file in the

database. At each file, I obtained its first 21 MFC

coefficients and stored them in the input matrix. At the same

time, I also placed a 1 in the target matrix for the actual

word that was spoken in that recording. In this case, the

target matrix had dimensionality of three by the number of

samples. The three dimension represented silence, on, or off

as the guess for the spoken word.

 Now that the data is properly formatted, we can

train the neural network. Matlab allows us to easily train our

network by selecting the inputs, targets, and training

algorithm from a dropdown menu. Additionally, Matlab

automatically divides the samples into training, validation,

and testing groups. In this case, I always specified 70%,

15%, and 15% respectively. The network was trained using

gradient descent backpropagation.

5. IMPLEMENATION

Now that the network has been constructed, we can begin to

use it on real-time input. First we read our analog

microphone input from the Due into a buffer until we reach a

window size of 16000 (or one second of audio). This is

preferred because the network was trained on 1 second long

recordings at a sampling rate of 16000 Hz. Once we obtain

our window, we find the MFC coefficients. This resulting

vector is forward propagated through the network using the

formula described in section 4. We then can search our

output vector for the location of the 1. The index of the 1

tells us which word has been spoken. If the word is found to

be “on”, we then tell the Due to set the pin connected to the

LED high. If the word is “off”, the pin is set low. If silence

is detected, nothing happens. This process is repeated

indefinitely.

6. RESULTS

The success of this system relies solely on how well-trained

that neural network is. Therefore, different networks were

attempted with the following varieties of parameters

(confusion matrices available in Appendix A):

Parameter System 1 System 2 System 3 System 4

Number of

Samples
3406 406 3406 406

Number of

MFFC
21 101 21 101

Training

Method

Gradient

Backpropa

gation

Gradient

Backpropa

gation

Bayesian

Regularizat

ion

Bayesian

Regularizat

ion

Success

Rate
75.6% 71.4% 89.3% 97.6%

From these results it is very clear that the most

important factor in training the network is the training

algorithm. Gradient backpropagation is the simplest method,

so it makes sense that a more robust method like Bayesian

Regularization would generate a more successful network.

As far as the number of coefficients, it seems to generally

not be that important, but different values should certainly

be tested.

Overall, the system responds fairly well to real

speaker recordings not in the dataset. The biggest issue with

this project is that silence is frequently determined to be a

word. The reason for this is that there were only 6

recordings of background noise. When using over one

thousand samples for the words, background noise was

removed as an option entirely during training. This should

be a simple fix by obtaining equal amounts of background

noise recordings for training.

7. FUTURE WORK

The type of Neural Network that I used in this project is the

most simplistic version possible. There are many types of

layers and modifications that can improve the performance

of the network [5]. For example, a recurrent neural network

would have some memory of past inputs to make better

decisions on time sensitive matters, like speech. Also, you

can add more hidden layers or combine multiple neural

networks for different results.

 One major obstacle to the performance of the

system is the fidelity of the input recordings. There are

several methods to improve the quality. Note that the goal

here is make the speech recording as close to that of an

anechoic chamber as possible. Two methods I would like to

implement in the future are beamforming with a microphone

array and active noise cancellation.

 Another area of improvement for this project is

expanding the functionality of the product. Currently, the

only tasks the device can perform are turning the LED on or

off. A good set of expanded tasks to start with may be

speaker control with volume control, song selection, and

some kind of audio enhancement DSP.

8. CONCLUSIONS

This paper outlined the steps to create a speech recognition

system. It starts by converting an acoustic speech system

into a digital signal via a MEMS microphone. Then the

signal is windowed and its MFCC values are obtained. This

feature set is used as the input to an artificial neural network.

The net outputs a command or silence, and the system

responds accordingly.

Voice recognition is an important tool that will

become more and more common in modern devices.

Existing products like this project such as the Amazon Echo

or Google Home prove to be successful and will continue to

grow in both performance and functionality.

9. REFERENCES

[1] Maiolo, Antonio. “Speech Recognition Wiki.” SR Wiki, 2015,

recognize-speech.com/.

[2] F. Zheng, G. Zhang, Z. Song, “Comparison of Different

Implementations of MFCC”, Journal of Computer Science &

Technology, vol. 16, pp. 582–589, 2001.

[3] Rumelhart, D. E., Learning representations by back-

propagating errors. Cognitive modeling. 1988

[4] Murphy A. Implementing Speech Recognition with Artificial

Neural Networks. 2014.

[5] Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-

rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent

Vanhoucke, Patrick Nguyen, Tara N. Sainath, and Brian

Kingsbury, “Deep Neural Networks for Acoustic Modeling in

Speech Recognition”. IEEE Signal Processing Magazine: 2012.

[6] Jonel Jozef B. Catapang1, Rionel B. CaldoImplementation of

Speech Recognition using MFCC for Plant Watering and Lighting

System. LPU-Laguna Journal of Engineering and Computer

Studies Vol. 3 No.3, 2016

[7] Google. Speech Commands Database.

https://storage.cloud.google.com/download.tensorflow.org/data/spe

ech_commands_v0.01.tar.gz

10. APPENDIX A

Figure 6: System 1 Confusion Matrix

Figure 7: System 2 Confusion Matrix

Figure 8: System 3 Confusion Matrix

Figure 9: System 4 Confusion Matrix

