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ABSTRACT

The focus of this paper is to compare a convolutional neu-
ral network (CNN) and a recurrent neural network (RNN)
in the particular task of instrument classification with log
mel-spectrogram. We first choose to use a simple but ef-
ficient CNN architectureLeNet to verify the validity of us-
ing CNN for instrument classification. We propose a de-
sign strategy meant to capture the relevant time-frequency
contexts for learning timbre, which permits using domain
knowledge for designing architectures. In addition, an-
other goal of this paper is to use one of RNN struc-
ture called Long-Short Term Memory to realize instrument
recognition. After comparing different network structure,
we can make a conclusion that the LeNet learns faster and
more accurate when doing instrument classification.

1. INTRODUCTION

Our goal is to compare the performance of different deep
learning architectures on recognizing instrument music
signal. Different instrument has particular ”color” or the
”quality” of a sound.It has been found to be related to the
spectral envelope shape and to the time variation of spec-
tral content. [5]

Convolutional neural networks (CNNs) have been ac-
tively used for various music classification tasks such
as music tagging [6] [3], genre classification [15] [2],
and user-item latent feature prediction for recommenda-
tion [16]. most previous methodology require a dual
pipeline:first,descriptors need to be extracted using a pre-
defined algorithm and parameters; and second, temporal
models require an additional tied on top of the proposed
descriptor. Therefore, descriptors and temporal models are
typically not jointly designed. Throughout this study, we
explore recognizing instrument by deep learning with the
input set to be log magnitude spectrogram. CNNs features
in different levels of hierarchy and can be extracted by con-
volutional kernels. The hierarchical features are learned to
achieve a given task during supervised training. For exam-
ple, learned features from a CNN that is trained for genre
classification low-level features (e.g., onset) to high-level
features (e.g., percussive instrument patterns) [4]. This
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end-to-end learning approach allows minimizing the effect
of fixed steps. Note that no strong assumptions over the
descriptors are required since a generic perceptually-based
pre-processing is used: log magnitude spectrograms.

Identifying sound is an inherently temporal task, and
some previous work indicates that classification of instru-
ment may depend on temporal feature. An effective way
to model temporal processing is by using recurrent neu-
ral networks (RNNs), which learn representations from se-
quential data [7]. As its name indicates, a RNN processes
the incoming input by also considering its own output
given the history input. In AI, RNNs have made impressive
progress in speech and action recognition [1], demonstrat-
ing the potential to use temporal feature for classification.
Meanwhile, RNN can be interpreted as a temporal model
(if more than one frame is input to the network) that allows
learning spectro-temporal descriptors from spectrograms.
In this case, learnt descriptors and temporal model are
jointly optimized, what might imply an advantage when
compared to previous methods. Therefore, in this paper
we test a suitable classifier, called Long Short Term Mem-
ory (LSTM), which is a Recurrent Neural Network (RNN)
that allows to deal with actual temporal patterns. In order
to compare with CNN, same spectrograms were used to
train and test RNN.

From the different deep learning approaches, we focus
on CNNs and RNNs due to several reasons:

1. by taking spectrograms as input, one can interpret
filter dimensions in time-frequency domain;

2. and they both can efficiently exploit invariance such
as time and frequency invariance present in spectro-
grams by sharing a reduced amount of parameters.

3. RNNs are flexible in selecting how to summarize the
local features, which can be helpful with extracting
temporal feature.

4. CNNs have better performance with local feature ex-
traction.

Additionally, most CNN architectures use unique filter
shapes in every layer [6] [8]. recent works point out that
using different filter shapes in each layer is an efficient way
to exploit CNN’s capacity [13] [14]. For example, Pons et
al. [14] proposed using different musically motivated filter
shapes in the first layer to efficiently model several musi-
cally relevant time-scales for learning temporal features.



Figure 1. LeNet model [12]

This paper is organized as follows. Section 2 and Sec-
tion 3 briefly described CNN and RNN architecture and
different aspects they extract feature form dataset Section
4 focus on the data preprocessing, experiment and result
followed with conclusion in 5.

2. NETWORK ARCHITECTURE

2.1 CNN architecture

First we use LeNet to test the feasibility of using CNN
to classify instrument. The architecture we choose to use
is LeNet [12], which is a relative simple but efficient net-
work. Figure 1 shows a graphical depiction of a LeNet
model.

As the figure shows, sparse, convolutional layers and
max-pooling are at the heart of the LeNet models. The
lower-layers are composed to alternating convolution and
max-pooling layers. The upper-layers however are fully-
connected and correspond to a traditional MLP (hidden
layer + logistic regression). The input to the first fully-
connected layer is the set of all features maps at the layer
below. This kind of architecture is very useful for extract
local feature and classifying the data. Besides, the ”color”
of the instrument is found to be related to the spectral en-
velope shape and to the time variation of spectral content.

Therefore, it is reasonable to assume different instru-
ment has its own time-frequency expression, which means
the shape of the kernel is important for classification task.
Equation below indicates the way next layer get informa-
tion from previous layer.

xjl = f(
∑
i∈Mj

xl−1i ∗ klij + blj) (1)

Form this equation, we can observe that the shape of
kernel is crucial for information extraction. In order to fo-
cus on how to exploit the capacity of spectrograms to rep-
resent instrument, we choose two different convolutional
kernel shapes(5*5,3*8)using same architecture.

In Figure 2, the design strategy allows to efficiently
model different musically relevant time-frequency con-
texts. Moreover, this design strategy ties very well with
the idea of using the available domain knowledge for de-
signing filter shapes that can intuitively guide the different
filter shapes design so that spectro-temporal envelopes can
be efficiently represented within a single filter.

2.2 RNN architecture

As mentioned above, instrument is not classified only rely
on their spectral pattern,but also on temporal patterns.

Figure 2. kernel shape model as 3×8 and 5×5

therefore, it is also important to discuss the influence of
temporal feature. we build up a network with one simple
layer of LSTM as shown in Figure 3

Figure 3. Example of a figure caption [11]

In this paper we choose a new and promising model of
recurrent neural network called Long Short Term Memory
(LSTM) [9]. LSTM is an RNN that uses self-connected
unbounded internal memory cells protected by nonlinear
multiplicative gates.

Error is back-propagated through the network in such
a way that exponential decay is avoided. The unbounded
(i.e. unsquashed) cells are used by the network to store in-
formation over long time durations. The gates are used to
aid in controlling the flow of information through the in-
ternal states. The cells are organized into memory blocks,
each having an input gate that allows a block to selectively
ignore incoming activations, an output gate that allows a
block to selectively take itself off-line, shielding it from er-
ror, and a forget gate that allows cells to selectively empty
their memory contents. The cell blocks are basically a re-
placement of original RNN’s hidden layer. The forward
output of cells, combine value of output gate and activated
cell value,shows below:

btc = btωh(s
t
c) (2)

Where btω is from the output gate, stc is a state value
from the cell. Note that each memory block can contain
several memory cells. Each gate has its own activation in
the range [0,1]. Moreover, the backward output of cell,
which is

εtc =
∂L

∂btc
(3)



εtc =

K∑
k=1

ωckδ
k
t +

G∑
g=1

ωcgδ
t+1
g (4)

By using gradient descent to optimize weighted connec-
tions into gates as well as cells, an LSTM network can
learn to control information flow. Furthermore, we also
build a two-layer LSTM to compare with one-layer LSTM.
The main goal here is to observer whether the performance
of classification task can be improved by simply adding
one additional layer.

3. EXPERIMENT

This section describes the proposed approach in instrument
classification. In order to test the proposed method, we run
a series of experiments on a chosen dataset. We evaluate
the results by comparing the system outputs to the anno-
tated references.

3.1 Dataset

To evaluate our system, we collect data samples from the
internet to make a instrument dataset. The instrument
dataset [10]used is annotated with the name of the instru-
ment. We choose 14 instruments out of 25 with 200 train-
ing and 120 test audio . Each audio is trimmed into 1
second, and the start point of the clip is choose from the
maximum of the derivative of the signal power.

3.2 Processes

We use log mel power as acoustic features.We first cut all
the recordings into 1 second. Then we compute short-time
Fourier transform(STFT) of the recordings with 1024 fft
length and 50% overlap. We set filterbank with 64 and
128 bands spanning 0 to 22050Hz, which is the Nyquist
rate. Finally we computing dB relative to peak power and
nominalized the data.

By setting different number of filterbank , we can de-
termine whether the number of filterbank can improve the
accuracy. The result shows in section 4.4.1.

3.3 Training network

We train two different networks and evaluate their results.
Since the size of the spectrogram can affect the network ar-
chitecture, we use spectrogram prosessed by 64 filterbank
in 4.2, and only first 80 frames preserved.

3.3.1 CNN

We choose Lenet to evaluate CNN functions. The architec-
ture shows in Figure 4. The input size of the spectrogram is
64×80. The kernel size of the first CNN layer is 5×5 with
stride to be 1. Next, it passes through a maxpooling layer
with 2×2 kernel size and the stride is 2. After that, another
CNN layer as well as another maxpooling layer has been
set. Finally, 3 fully connected layer has been set, the units
among them are 120, 84, 14.

In order to determine whether different size of kernel
may affect the final result. We also set a contrast test which

Figure 4. Lenet architecture with parameters

change the kernel size in CNN layer in to 3×8. The result
in section 4.4.2.

3.3.2 LSTM

For LSTM, we set 3 different comparative test in order to
get the best results.

Firstly, with only 1 LSTM layer, we set 64 units com-
pares to 128 units, where the units means the output dimen-
sion. After connected to a fully connected layer which has
14 units, we can determined whether the number of units
affects the result. The result shows in section 4.4.3.

Secondly, in order to determinate whether the number
of layer affects the result, we set a 1 LSTM layer sys-
tem compares to a 2 LSTM layer system. The 1 LSTM
layer system contains 64 units and the 2 LSTM layer sys-
tem contains 128 units in each layer. The result shows in
section 4.4.4

Thirdly, with 2 LSTM layers, we set two different sys-
tems. The first system contains 128 units in the first layer
and 128 units in the second layer. The second system con-
tains 128 units in the first layer and 64 units in the second
layer. By comparing the result from two systems, we can
determine whether the number of units affects the result.
The result in section 4.4.5

3.4 Result

To evaluate the result, we use traceback function in tensor-
flow to help observe the leaning rate and test accuracy. All
result comes out of 100 epoch. The x axis of figure 5 - 10
is the number of epoch, and the y axis of figure 5 - 10 is
accuracy.

3.4.1 Different number of filterbank comparation

We train two different experiments for each network.The
result in Figure 5. The labels are present as ”network
name units in each layer(or filter size) input size(128*80
or 64*80)”.The result shows that in an LSTM system,
whether the units in different layers are the same or not, the
64*80 size input always get a better result. But for LeNet
system, whether the filter size is 3*8 or 5*5, the 128*80
size input always get a better result.

3.4.2 Filter size comparation in LeNet system

With the input size 64*80, we set a contrast test which
change the kernel size in CNN layer from 5*5 into 3*8. As
shown in Figure 6, the results come out of the 100 epoch
are almost the same. But when in the first epoch, we notice
that with a 3*8 kernel, the LeNet learns faster than with a
5*5 kernel.



Figure 5. Result from different preprocess method

Figure 6. Result from LeNet system with 3*8 and 5*5
kernel size

3.4.3 Number of units comparation in LSTM system

With the input size 64*80, we set a system with 128 units
in the LSTM layer compares to a system with 64 units in
the LSTM layer. As shown in Figure 7, we can make a con-
clusion that larger number of units runs more effectively,
not only test accuracy but also running time.

3.4.4 Number of layers comparation in LSTM system

In this part, we set three different experiments. One of the
experiment is a one LSTM layer system with 128 units.
The other two systems are two layers system. One contains
128 units in the first layer and 128 in the second layer. The
other one contains 128 layers in the first layer and 64 in the
second layer. The result shows in Figure 8. We can clearly
observe that with input size 64*80, the two layers systems
always get a better result compares to the one layer system.

Figure 7. Result from a one LSTM layer system with 128
and 64 units

Figure 8. Result from 1 layer system and 2 layers systems

Figure 9. Result from 128 units and 64 units in the second
LSTM layer

3.4.5 Number of units in the second LSTM layer
comparation

In this part, we set two comparative systems. One of them
contains 128 units in the second LSTM layer. The other
contains 64 units in the second LSTM layer. All the other
settings are the same. As shown in Figure 9, we observe
that the result shows limit difference.

3.4.6 LeNet compares with LSTM

After all the test above, we can successfully choose the best
result from either the CNN system and LSTM system. As
for a CNN system, the LeNet structure with 3*8 kernel size
and 64*80 input size gets the best result. As for a LSTM
system, the two layer system with 128*80 input size and
each layer contains 128 units gets the best result. The result
shows in Figure 10.

Figure 10. Result from LeNet system compares with
LSTM system



4. CONCLUSION

From the results shows in 3.4, we notice that in a LeNet
system, the 3*8 kernel size can get a better solution. And
in a LSTM system, not only the number of units, but also
the number of layers can affect the system. After several
comparation, we notice that a two layer LSTM system with
128 units in each layer gets the best solution. As for the
size of input data, we notice that the LeNet is more suit-
able with larger input size(128*80).But the LSTM get bet-
ter result with 64*80 input size. This may because LeNet
is a well developed neural network system which can deal
with more information.

In the last experiment , we compare LeNet system to
LSTM system. As shown in Figure 10, we can clearly
see that the learning rate from LeNet are faster than from
LSTM system. And after 100 epochs, the result from
LeNet is a little bit higher than from LSTM system. In
this case, we can make a conclusion that LeNet system is
more effective when classifying music instrument.
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