
  

MUSICAL POLYPHONY ESTIMATION

ABSTRACT 

Knowing the number of sources present in a mixture is 
useful for many computer audition problems such as 
polyphonic music transcription, source separation and 
speech enhancement. Most existing algorithms for these 
applications require the user to provide this number 
thereby limiting the possibility of complete automatiza-
tion. In this paper, we explore a few probabilistic and 
machine learning approaches for an autonomous source 
number estimation. We then propose an implementation 
of a multi-class classification method using convolutional 
neural networks for musical polyphony estimation. In 
addition, we use these results to improve the performance 
of an instrument classifier based on the same dataset. Our 
final classification results for both the networks, prove 
that this method is a promising starting point for further 
advancements in unsupervised source counting and sepa-
ration algorithms for music and speech.  

Index terms: Level of polyphony, instrument recognition, 
Convolutional Neural Networks (CNNs), multi-class 
classification, multi-label classification, multi-pitch esti-
mation 

1. INTRODUCTION 

1.1 Background 

Source counting is a relatively under-researched topic in 
the field of music information retrieval. Most of the cur-
rent source separation or source estimation algorithms 
today based on Non-negative Matrix Factorization 
(NMF), Hidden Markov Models (HMM) or even neural 
networks need a certain amount of pre-training on the 
number of sources in the mixture to be able to maintain 
the accuracy on test data. Unsupervised methods like K-
Means or online NMFs also need the number of clusters 
or sources to be provided by the user. Other acoustics 
based methods rely on stringent anechoic conditions. If a 
system can intelligently identify this number and sound 
source, it would benefit the separation enormously by 
providing a good initialization and reducing the computa-
tional time. Not only separation, but real time transcrip-
tion of polyphonic music or score following can be made 
easier once the number and type of sources are known 
beforehand. For speech processing, potential applications 
where source counting could be a useful pre-processing 
step are real-time denoising of speech signals using on-
line NMF or multiple speaker estimation and identifica-
tion.  

On the downside, we found a lot of irregularities in terms 
of its applicability and implementation. According to 
Cheveigne in his chapter on multiple F0 estimation[1], 

counting the number of sources in a mixture is difficult 
both computationally and perceptually. The reasons are 
that some signals are ambiguously perceived as single 
voices having a lower F0 or the sum of harmonically re-
lated F0s, thus algorithms set to choose as many or as few 
voices could lead to splitting partials of one source or 
combining multiple sources respectively. Real world 
sound sources tend to be aperiodic and inharmonic mak-
ing this task more challenging. While many methods like 
thresholding to find the global weight of an F0 candidate 
by Klapuri[1], transcription systems for detection of on-
sets and offsets of notes by Goto[1] or the cancellation 
filters by Cheveigne[1] have been proposed, we found the 
method by Wu[1] to use an HMM to model transitions 
between different number of voices particularly interest-
ing. Also, exploring the timbral features of music and 
speech to form clustering algorithms for pitch estimates 
as proposed by Duan et al[2] would be a great approach 
for source number estimation, and has been described 
further as a stepping stone for our method. 

With this motivation, we would like to find a novel ap-
proach to tackle the problem of polyphony estimation for 
music. To that end, we organize the paper in the follow-
ing manner: describe the previous relevant work being 
done in the domain of multi-pitch estimation/streaming 
and CNNs for instrument classification — define and 
explain our problem statement and method online — 
conclude with our classification results and suggest pos-
sible improvements.  

1.2 Related work 

Previous work in multi pitch estimation involves iterative 
spectral subtraction [3] and probabilistic modeling of 
peak and non peak regions [4]. The final goal is to find 
the maximum likelihood of pitches in a given frame using 
spectral manipulation of the sources. As the second step 
for estimating the pitch trajectories once individual pitch-
es have been defined, the method of multi pitch streaming 
of harmonic sound mixtures [2] has been adopted. This 
method, uses harmonic structures, MFCCs, & UDCs as 
timbral feature vectors for the estimated pitch trajectories, 
and then streams them into sources using a constrained 
clustering algorithm. Finally, in the predominant instru-
ment recognition for polyphonic music [5], multi-label 
classification using CNNs is used to estimate the proba-
bility of multiple predominant instruments in 1 second 
long time frames. The IRMAS training dataset with 11 
individual instruments and their combination is used with 
their mel-spectrograms as input to an AlexNet  [6] and 
VGGNet [7] like architecture. The results are shown to 
outperform previous instrument recognition SVM mod-
els.  
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 2. METHOD  

2.1 Outline 

With this background, we combine the advantages of 
both these methods to use a CNN to classify the level of 
polyphony in each audio frame which is the frame wise 
count of active notes, pitches or instruments. With a suit-
able dataset, training-labelling process and feature extrac-
tion method, we would be able to not only estimate the 
number of such sources in a frame, but also what instru-
ments/pitches they correspond to. A diagrammatic repre-
sentation of our multi class classification idea is provided 
below. 

Figure 1.  Pictorial representation of our problem state-
ment  

   

Problem statement - Given any polyphonic audio file, the 
system should be able to estimate the number of active  
instruments, pitches or notes per frame in real time. Us-
ing this information, an instrument classifier would be 
able to name the constituent instruments active per frame 
in real time. We now describe the proposed method out-
line, experiments and results. 

2.2 Training Data 

The Bach10 Dataset [4] from the Interactive Media Lab 
of the Northwestern University was used for our training 
and classification task. It is a polyphonic music dataset 
which can be used for various research problems like 
Multi-pitch Estimation and Tracking, Audio-score 
Alignment,  or Source Separation. It consists of the audio 
recordings of each individual instrument and the ensem-

ble of ten pieces of four-part J.S. Bach chorales, as well 
as their MIDI scores, the ground-truth alignment between 
the audio and the score, the ground-truth pitch values of 
each part and the ground-truth notes of each piece. The 
individual recordings of the four parts (Soprano, Alto, 
Tenor and Bass) of each piece are performed by violin, 
clarinet, saxophone and bassoon respectively.  

The University of Iowa Music Instrument Samples 
(IOWA dataset) [8] contains 24 bit/44.1 KHz recordings 
of chromatic notes from the entire range of numerous 
woodwind, brass, string, and percussive instruments. The 
recordings are made with three Earthworks QTC-40 
wide-frequency high resolution microphones arranged in 
a Decca Tree formation of left, center, and right place-
ments 12 inches apart and 5 feet in front of the performer. 
The left and right mics were edited into single-note stereo 
24/44.1 files archived into downloadable zipped folders 
which were used for this project. 

2.3 Data pre-processing 

2.3.1 CNN1 for Polyphony Estimation 

Appropriate preprocessing of the dataset is important to 
obtain better classification accuracy using the Convolu-
tional Neural Networks. From the Bach10 dataset, all 
possible combinations of instruments in solo, duet, trios 
and quartets for each of the ten chorales were created 
using Audacity. For instance, if we denote the four in-
struments in the Bach10 dataset as B, C, S, V, some of 
the combinations available are S, SV, BCS, BCSV and so 
on. Thus, given that there were 10 pieces and 4 instru-
ments, we could create a total of 40 solo, 60 duets, 40 
trios and 10 quartets. From the IOWA dataset, we created 
33 tetrads, triads, dyad and single notes using non-repeat-
ing notes of the violin, bassoon, saxophone and clarinet 
in all combinations. For instance, a few combinations are 
violin C5 + saxophone E4 + bassoon G2 + clarinet B4, or 
violin G5 + clarinet E4 or just Saxophone D3. We made 
sure to cover the most commonly used note ranges for 
each instrument. 

Finally, an equal amount of data per class and instrument 
combination was chosen from both the datasets. As a 
result, we were able to create our own dataset consisting 
of over 22 minutes of audio data in four different levels 
of polyphony (class). 

These were further divided into segments of length 0.3 
seconds (13230 samples) after silence-removal and then 
arranged as columns in a matrix. The length 0.3 seconds 
was chosen based on the rationale that this duration is 
sufficient for humans to perceive and identify different 
levels of polyphony and it also reduces computational 
time. The segmentation resulted in an audio data matrix 
of dimensions 13230 x 4344. In addition, a vector of di-
mension 4344 x 1 containing the true labels indicating the 
level of polyphony  of each column was created. We de-
cided to leave the sample rate to the original value of 
44100 Hz as the audio files were completely noise free.  



  

2.3.2 CNN2 for Instrument Recognition  

To demonstrate the application of source counting in in-
strument recognition, we trained another CNN using a 
subset of the dataset created already. Here, we used all 
the 10 chorales played by single instruments from 
Bach10 and the 33 single notes we created using the 
IOWA dataset.  Choosing an equal number of data for the 
4 instruments — bassoon, clarinet, saxophone and violin, 
we were able to retrieve 18.06 minutes per instrument. 
We divided them again into 0.3 seconds (13230 samples) 
segments and labeled them as 0 for bassoon, 1 for clar-
inet, 2 for saxophone and 3 for violin, thus making this a 
multi-label classification task. 

An input data matrix 13230 x 3612 and ground truth label 
vector of 1 x 3612 was created using these segments in a 
similar manner described earlier.  

The python library librosa was used to convert each of 
the 0.3 second long audio segments into linear frequency 
spectrogram. To compute the Short-time Fourier Trans-
form, the frame size and hop length were set to 1024 and 
256 samples respectively. Next, the mel-scale and natural 
logarithm compression were applied to the linear fre-
quency spectrogram to obtain the log-mel-spectrogram. 
We used 128 mel-frequency bins following the methods 
used by Han et al in [5]. This allowed us to strike a bal-
ance between preserving the harmonic character of the 
music while reducing the dimensionality of the data. 
Each audio segment resulted in a log-mel spectrogram of 
dimensions 128 x 52 which were then stacked together 
into a tensor of dimensions 4344 x 128 x 52 for CNN1 
and 3612 x 128 x 52 for CNN2. These tensors were then 
used as the input to the Convolutional Neural Networks 
whose details are given below. 

2.4 Architecture of the CNNs 

We used the deep learning library Keras with TensorFlow 
backend to build our neural networks. The final architec-
ture of the CNNs used in both the tasks were obtained 
after a fair amount of trial and error. We initially began 
testing out the popular AlexNet which consists of a very 
deep convolutional architecture with several layers of 
convolution followed by max-pooling. Specifically, this 
architecture consisted of three sets of double-convolution 
layers of size 3 x 3 with 32, 64 and 128 filters respective-
ly followed by a 2 x 2 max-pooling layer. 

 A batch regularization layer was added with a regulariza-
tion parameter of 0.01. However, due to the heavy archi-
tecture, the computation time came out to be 24 minutes 
for 20 epochs on a MacBook Pro with a 3.3GHz i5 core 
and 16GB RAM. The validation and testing accuracy 
obtained using this architecture were 59% and 64% re-
spectively. These values were not good enough and we 
continued to experiment with other possible architectures.  

Finally, through some more hyper-parameter tuning we 
arrived at an architecture that resulted in validation and 
testing accuracy of 76.81% and 81. 37% respectively, and 
took about 7 minutes to complete 20 epochs on the same 
machine. The specifics of this architecture are shown in 

the table below. We decided to use three single-convolu-
tion layers in our architecture as that reduced computa-
tion time and increased accuracy. The non-saturating ac-
tivation function ReLU was used after each of the convo-
lution layers as they produce much faster learning rates 
compared to saturating activation functions like the sig-
moid or tanh. The final classification layer in the first 
CNN used a softmax function since we are looking for 
specific labels that denote the level of polyphony in a 
given piece of audio. For the instrument recognition task 
we used a sigmoid function classification to obtain a mul-
ti-label classification output. We also observed that max-
pooling gave better results than average-pooling for this 
application.  

Table 1.  Architecture of the CNN model  

We trained the first and second CNNs by optimizing the 
categorical-crossentropy and binary-crossentropy loss 
functions respectively, using the adaptive learning rate 
RMSprop optimizer. Dropout layers were not used as 
they were reducing the accuracy in both the training and 
testing stages. We also carried out tests using both linear 
amplitude mel-spectrograms and log-amplitude mel spec-
trograms as our input to the CNN. We observed that log-
amplitude mel-spectrograms were the clear winners in 
this case as they took a short time to compute and pro-
duced higher accuracies.  

2.5 Performance Evaluation 

2.5.1 Performance of CNN1 for Polyphony Estimation 

To test how well our algorithm performs on unknown 
data, we composed three new pieces of polyphonic music 
from our datasets. These pieces comprised of music of 
varying levels of polyphony like in the training data with 
each instrument playing only one note at one time.  

We now describe the results obtained for one of the 
pieces, a mixed sequence of fourteen units. Each unit was 
either a solo note, a dyad, a triad or a tetrad. The predic-
tion accuracy and the classification results are displayed 
below.     



  

To gain a more intuitive understanding of how our CNN 
is performing we generated the confusion matrix. The 
matrix values and a heat map are shown below. The 
strong diagonal clearly shows that the system is perform-
ing as desired in this classification task. 

Here, the labels 0, 1, 2 and 3 correspond to increasing 
levels of polyphony.  

Figure 2: Classification results for CNN1 

To demonstrate these results in real-time, we further seg-
mented each unit into six sub-frames and used our model 
to predict the labels. The six predicted labels (red dots) 
and the ground truth (black solid line) per unit are shown 
below for four such units.  

Figure 3: Real-time estimation of level of polyphony  

Next, we made a comparative analysis of our polyphony 
estimation algorithm and the multi-pitch estimation 
method proposed by Duan et al [4]. The multi-pitch esti-
mation algorithm produces the MIDI numbers of the 
pitches present per frame in a piece of polyphonic music. 
This gives us enough information to know the level of 
polyphony in per frame as well. By comparing the po-
lyphony estimates against the ground truth values in the 
three pieces, we observed that our algorithm produced 
slight improvements over the multi-pitch estimation algo-

rithm. The figure below illustrates the accuracies of both 
the methods in a comparative manner.  

Figure 4: Comparison of polyphony estimation accuracy 

2.5.2 Performance of CNN2 for Instrument Recognition 

Similar validation and prediction metrics were used for 
the evaluation of the CNN2 for instrument recognition. 
However, as this was a multi-label classification, we used 
the sigmoid activation function with binary cross-entropy 
loss function with adaptive RMSprop optimization. First, 
the train-test split on the training data gave a strikingly 
consistent validation accuracy of 98.38% and testing ac-
curacy of 95.65% due to the test data being monophonic 
played by a single instrument.  

We then evaluated the model on mixture signals like 
those created in our testing set for CNN1 - 3 songs of 
varying polyphony. The accuracy dropped to 63.99%, 
proving that it couldn’t predict the correct instruments 
even after tweaking different thresholds for the multi-
label sigmoid layer [0.3 to 0.7].  

We decided to use the results of CNN1, which essentially 
provided us with the number of active sources (instru-
ments) in every frame of the testing songs to guide and 
improve the predictions of CNN2. For example, if in a 
testing frame containing just the bassoon, the CNN2 in-
accurately predicted high probabilities for the violin and 
saxophone in addition to the bassoon, and the CNN1 pre-
dicted a level one polyphony for that frame, we used this 
information to choose the one highest probability 
amongst the bassoon, violin and saxophone.  

In general, the nth level of polyphony for each frame pre-
dicted by CNN1 was used to select the n best instrument 
probabilities predicted by CNN2. This helped the multi-
label predictions get closer to the ground truth and the 
accuracy rose to 83.04%. The average accuracy, recall, 
precision and f1 score improvement using this technique 
is evident from the figure below.  



  

Figure 5: Improvements in the classification results of 
the CNN2 

3. CONCLUSIONS

Here, we tackled the problem of polyphony estimation 
for instruments playing one note in a time frame like the 
bassoon or clarinet. The results are first compared to a 
multi-pitch estimation algorithm and then used to im-
prove the performance of an instrument classifier. 

Our next step would be to find augmentations to the 
model to cater to inherently polyphonic/polytimbral in-
struments like the piano, guitar or percussions. A combi-
nation of spectral features to first detect the polyphony 
and then timbral features to predict the instruments or 
pitches could be a future line of work. Once this is 
achieved, our CNN based polyphony estimation model 
can work in concert with probabilistic models like the 
multi-pitch streaming [2] algorithms for the entire audio 
file. 
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