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ABSTRACT 

Speech separation is an important topic with increasingly 

broad applications. Plenty of methods have been pro-

posed to solve this problem in various challenging situa-

tions. In this paper, we first investigate the influence of 

the number of channels on the performance of the Inde-

pendent Component Analysis (ICA), a widely used meth-

od dealing with multichannel sound source separation. 

Then, for monaural sound source condition, we report the 

Independent Subspace Analysis (ISA), a model removing 

the channel limitation in ICA, and finally the Deep Re-

current Neutral Networks (DRNN) is presented. The 

DRNN model is improved by using denoising autoencod-

er to solve the problem. Our best separation results 

achieve SNR to 13.93 on given datasets.  

1. INTRODUCTION 

Source separation aims to recover one or more source 

signals of interests from a mixture of signals. An im-

portant topic is to obtain clean speech signals mixed with 

non-stationary noises. An effective solution towards this 

question can facilitate human-human or human-machine 

communication in unfavorable acoustic environments, 

such as enhancing the accuracy of automatic speech 

recognition (ASR) [1].  

Source separation tasks can be divided into two cate-

gories according to the number of channels. First, multi-

channel separation, the system has more than one micro-

phone to record audio. Under this condition, the number 

of channels is greater, equal and less to the number of 

sound sources are defined as overdetermined, determined 

and under-determined, respectively. For under-

determined condition, Degenerate Unmixed Estimation 

Technique was presented by Yilmaz and Rickard [2] and 

works well with anechoic environments. Nonetheless, it 

would fail if the sources overlap too much. While for 

overdetermined source separation, Cardoso and Sou-

loumiac proposed the Beamforming model [3]. It is sim-

ple and robust, but needs to know the direction of the tar-

get source.  

ICA [4-5], meanwhile, is a model most commonly 

used in overdetermined and determined conditions. It 

achieves elegant results. And many ICA-based techniques 

have been developed and proposed [6-8]. However, ICA 

cannot be directly used for the separation of monaural 

time domain signals.  

ISA removes the above limitation. Based on ICA 

model, ISA has been proposed to apply in monaural 

sound source separation, for example, by Casey and 

Westner [7] and Orife [9]. Also, a sound recognition sys-

tem based on ISA has been adopted in the MPEG-7 

standardization framework [10]. What’s more, statistical 

model-based spectral subtraction [11] in speech denoising, 

sparse and low-rank model [12] are presented. However, 

they can’t deal with drums sound whose acoustic compo-

nents may lie in sparse subspaces instead of being low 

rank. Without sparse subspaces and low rank prior as-

sumption, Non-negative Matrix Factorization (NMF) [13] 

is used to factorize time-frequency spectral representa-

tions. Nevertheless, in real-world scenarios, since signals 

might not always follow Gaussian distributions, linear 

models, including NMF model, are not robust enough to 

model the complicated relationship between separated 

and mixture signals. 

Recently, deep learning techniques attracts lots of at-

tention. Dealing with the nonlinear relationship between 

mixture signals and separated sources, deep neural net-

works (DNN) model is proposed [14]. Meanwhile, con-

sidering the continuity characteristic of audio signal, 

DRNN model is presented [15-17], which achieve good 

results in dealing with sequential data. Moreover, the ap-

plication of autoencoder in speech enhancement shows 

good results [18-19].  

In this paper, we introduce the basic theory of ICA, 

ISA and DRNN model in Section 2. In Section 3, we il-

lustrate the improvements on solving the DRNN model. 

And Section 4 presents the experimental setting and cor-

responding results using the NOIZEUS dataset [20], a 

noisy speech corpus for evaluation of speech enhance-

ment algorithms. We conclude the paper in Section 5. 

2. SOURCE SEPARATION MODEL 

2.1 Multi-channel 

2.1.1 ICA model 

Under multi-channel source separation condition, the re-

lationship between recorded time signals and source 

sources can be expressed as 

xj(t)=aj1s1(t)+aj2s2(t)+⋯+ajns1n(t)              (1) 

where xj(t) is the jth observation and sn(t) is the nth sound 

sources. The recorded signals are the mixture of sound 

sources in different ways (depend on the position of the 



  

 

microphones). If we knew the parameters ajn, we could 

solve the linear equation in (1) by classical methods, and 

finally get separated sound sources.  

ICA tries to solve this problem by using the statistical 

properties of the sound sources sn(t) . It assumes the 

sources, at each time instant t, are statistically independ-

ent. Though the assumption is unrealistic in many cases, 

it doesn’t need to be exactly true in practice. To explain 

the model clearly, we denote X as the matrix whose row 

vector xj are the samples of mixtures xj(t), S as the matrix 

whose row vector sn are the samples of sn(t), and denote 

A as the mixing matrix with elements ajn. Thus, the mix-

ing model can be written as 

X=AS                                     (2) 

The mixing matrix A is unknown. We estimate both A 

and S only by using the observations X. If matrix A can 

be estimated successfully, we can compute its inverse, 

say W, and obtain the independent component simply by 

S=WX                                     (3) 

In ICA model, the independent components are re-

stricted and assumed as having non-Gaussian distribution. 

And in most of classical statistical theory, random varia-

bles, here is the recorded signals which is mixed by the 

sound sources “randomly”, are assumed to have Gaussian 

distributions. Meanwhile, the Central Limit Theorem, a 

classical result in probability theory, indicates that the 

distribution of a sum of independent random variables 

tends toward a Gaussian distribution, under certain condi-

tions. Thus, the recorded signals usually have distribu-

tions that are closer to Gaussian than any of the original 

sound sources. 

The problem of finding A  becomes maximizing the 

non-Gaussianity of wTx, where  wT denotes a row vector 

of W. In this paper, we use negentropy as a quantitative 

measure of non-Gaussianity of a random variable. The 

entropy of a discrete random variable 𝒀 can be defined as  

H(Y)= − ∑ Pi (Y=ai)logP(Y=ai)                (4) 

where the ai are the possible values of Y. Meanwhile, the 

differential entropy H of a random vector y with density 

f(y) can be defined as (Cover & Thomas, 1991; Papoulis, 

1991): 

H(y)= − ∫ f(y)logf(y)dy                       (5) 

A fundamental result of information theory is that a 

Gaussian variable has the largest entropy among all ran-

dom variables of equal variance. Therefore, the 

negentropy J can be expressed by entropy as  

J(y)=H(y
gauss

) − H(y)                       (6) 

Where y
gauss

 is a Gaussian random variable of the same 

covariance matrix as y. The estimation of negentropy is 

difficult, we use approximation 

J(y)∝[E{G(y)} − E{G(y
gauss

)}]
2
              (7) 

where the function G is some non-quadratic function, E 

denotes the expected value of its arguments (Hyvärinen, 

1998b).   

 

2.1.2 FastICA Algorithm 

The basic principles of ICA have been introduced in 

preceding section. To maximizing the contrast function in 

Eq. (7), FastICA, an efficient algorithm, is presented in 

this section. Before using FastICA, centering and whiten-

ing are preprocessing techniques to simplify the estima-

tion and make it better conditioned.  

Centering is making x a zero-mean variable, i.e. sub-

tract its mean vector m=E{x}. After estimating matrix A, 

we need to add the mean vector of s back to the centered 

estimates of s. The mean vector is given by A-1m. Mean-

while, whitening is making the components of x uncorre-

lated and their variances equal unity. One popular method 

for whitening is to use the eigenvalue decomposition 

(EVD) of the covariance matrix E{xxT}=EDET, where E 

is the orthogonal matrix of eigenvectors of E{xxT} and D 

is the diagonal matrix of its eigenvalues, D =diag(d1, 

d2, …, dn). Whitening signals can now be done by 

x̃= ED-1/2ETx                               (8) 

where D =diag(d1
-1/2, d2

-1/2…, dn
-1/2). 

Begin with estimating one weight vector wTx, i.e. cal-

culating one independent sound sources, the FastICA al-

gorithem is organized as: 

1. Choose an initial (e.g. random) weight vector w. 

2. Let w+=E{xg(wTx)} − E{g'(wTx)}w. 

3. Let w=w+/‖w+‖. 

4. If not converged, go back to 2. 

Above process is based on a fixed-point iteration scheme 

for finding a maximum of the non-Gaussianity. And g 

(g(u)=u3 in this paper’s algorithm) is the derivative of the 

function G used in Eq. (7). The convergence means that 

the dot-product of the old and new values of w equal to 1. 

We don’t cover the concrete deduction of FastICA in this 

paper, the details can be get from the paper by A. 

Hyvärinen and E. Oja [6]. Then, applying above process 

on every weight vectors wi. To prevent the vectors from 

converging to the same maxima, we need decorrelate the 

outputs w1
Tx, …, wn

Tx after every iteration. The decorrela-

tion method in this paper is  

wp=wp − ∑ (wp
Twj)

p-1

j=1 wj                    (9) 

In sum, applying FastICA on a set of mixing time signals, 

we can get the separated sound sources under determined 

and overdetermined conditions.  



  

 

 

Figure 1. The results of applying FastICA on two mixing 

time signals, which are composited by two male speeches 

in random ratio, respectively. 

The two original sound sources in Fig. 1 are two 

speeches spoken by different male, respectively. And the 

curves in Figure. 1 are the samples of the signals in time 

domain. We can find that the curves of separated sources 

are similar with the original sources, except different in 

the magnitude of amplitude. In next section, we will pre-

sent how to develop ICA model in monaural conditions.  

2.2 Monaural  

2.2.1 ISA 

Based on the concept of reducing redundancy in time-

frequency representations of signals, ISA represents 

sound sources as low dimensional subspaces in the time-

frequency plane. It extends ICA by identifying independ-

ent multicomponent source subspaces as input vectors. 

First, the audio data is mapped to spectrogram by 

Short Time Fourier Transform (STFT). The computed 

spectrogram is an n by m matrix stored magnitude infor-

mation X and phase information Φ . To extracted sub-

spaces from the spectrogram, the transposed spectrogram 

XT is calculated by Singular Value Decomposition to get 

the eigenvalue decomposition of the covariance matrix of 

XT. The deductions are given by 

 XT=U∙D∙VT                             (10) 

where the computed diagonal matrix D stores a set of 

singular values in decreasing order, two orthogonal ma-

trices U = (u1, …, um) and V = (v1, …, vn) equal to the 

eigenvectors of XXT and XTX, respectively. The singular 

basis vectors (e.g. um and vn) are linearly independent. 

The singular values in D represent the standard devia-

tions of the principal components of X. These standard 

deviations are proportional to the amount of information 

contained in the corresponding principal components. 

Therefore, the subspace of the X can be obtained by  

X̅=D̅∙VT∙X                               (11) 

where D̅ is a submatrix containing the upper d rows of D. 

As we can see from the Eq. (11), the number of d deter-

mines the amount of information to keep remains. How-

ever, there is a trade-off between the amount of infor-

mation to retain and the reconcilability of the resulting 

features. Usually, a threshold ϕ is set for the estimation 

of d as  

1

∑ σi
m
i=1

∑ σi
d
i=1  ≥ ϕ                        (12) 

where σi is the ith singular value of matrix D. Based on 

their experiments, M. A. Casey and A. Westner’s [7] indi-

cates that the value of ϕ is 0.7 when extracts string quar-

tet. 

Then, the reduced rank spectrogram X̅ can be inter-

preted as an observation matrix, where each column is 

regarded as realizations of a single observation. By per-

forming FastICA algorithm, as discussed in Section 2.1, 

we can get the mixing matrix A. The pseudo-inverse A-1 

represents the unmixed matrix, correspondingly. Thus, 

the independent temporal amplitude envelops E can be 

computed as  

E = A-1 ∙ X̅                              (13) 

The estimation of the independent frequency weights F is 

achieved by  

F-1 = A-1 ∙ 𝑻                              (14) 

Finally, the independent sound sources’ spectrograms are 

computed by multiplying one column of F with the cor-

responding row in E,  

Sc = Fu,c
 ∙  Ec,v                              (15) 

where u=1, …, n, v=1, …, m and c=1, …, d. Combined 

with mixing signals’ phase information Φ  directly, the 

time signals of the separated sources are gained by in-

verse STFT of each spectrograms Sc. 

 

Figure 2. The time and frequency domain results of ap-

plying non-stationary ISA model on voice-drum mixing 

signals presented by S. Dubnov [21].  

The discussion above has the assumption that the fre-

quency basis functions are invariant which means that no 

pitch or frequency structure changes are possible for the 

separated sound sources. However, such assumption is 

too week to deal with the practice. To solve the separa-

tion of sound sources with non-stationary spectrogram. 

The mixing signals’ spectrogram is decomposed into 

blocks of frames, each block having a unique subspace 

decomposition. Then, independent components which 

belongs to same source but in different block are identi-

fied and group together depending on the similarity of 

probability density functions.  Traditional clustering 



  

 

methods are presented by Casey and Westner [7] and 

Dubnov [15]. 

2.2.2 DRNN 

In this part, we try to use deep neural networks to solve 

the speech separation problem in spectral domain. As-

sume x(t) is the training input at time t, and y
1
' (t), y

2
' (t) are 

the prediction output of the network, corresponding to the 

first and second channels, respectively. Meanwhile, in an 

RNN model, the output of the nth hidden layer can be ex-

pressed as hn=f(Wn∙hn-1(x(t))+b
n
+Un∙hn-1(x(t-1))), where 

W and U are weights and b is the bias. In a DNN model, 

the weight matrix U equals to zero.  

 

Figure 3. Framework of DRNN  

In our project, we simplified this problem. We turned 

x(t) to the mixture of clean voice and noise, denoted as x(t) 

= xclean(t) + xnoise(t)). Correspondingly, y
1
' (t)  means the 

prediction of clean voice, and y
2
' (t) means the prediction 

of noise. Usually, the noise is not required, so we only 

need to use the neural network to predict the output of 

clean voice.  

The input of the neural network is the magnitude 

spectrogram of x(t). The outputs of the neural network are 

the magnitude spectrograms of y
1
' (t) and  y

2
' (t) and we on-

ly retain the isolated voice signal(y
1
' (t)). Then a frequency 

mask is implemented to the outcome and then we get the 

estimated spectrogram of   y
1
' (t). 

 
Figure 4. Architecture of RNN model 

 

3. IMPROVEMENT ON DRNN 

As we have turned the input into the mixture of clean 

voice and noise. We can use denoising autoencoder to 

help us solve the problem more effectively.  

In this part, we turn some of the original data values 

to 0 to corrupt the data as the input x'(t). The output of the 

network y(t) is the reconstruction of the original signal 

x(t). On the contrary, the loss function is calculated by 

comparing the output values y(t) with the original input 

x(t), not the corrupted output x'(t). 

4. EVALUATION 

4.1 Dataset and Evaluation Measures 

The noisy speech corpus NOIZEUS, used in our project 

evaluation, was developed to facilitate comparison of 

speech enhancement algorithms. The noisy database con-

tains 30 IEEE sentences (produced by three male and 

three female speakers) corrupted by eight different real-

world noises at different SNRs. The noise was taken from 

the AURORA database and includes suburban train noise, 

babble, car, exhibition hall, restaurant, street, airport and 

train-station noise. The sentences were originally sampled 

at 25 kHz and down-sampled to 8 kHz. The IRS filter is 

independently applied to the clean and noise signals. A 

noise segment of the same length as the speech signal is 

randomly cut out of the noise recordings, appropriately 

scaled to reach the desired SNR level and finally added to 

the filtered clean speech signal. 

The inputs of the proposed ICA algorithms are the 

mixing of the clean voice in the database. Two voices are 

mixed in a random way (e.g. two signals in time domain 

are multiplied by a random matrix). Changing the number 

of mixing inputs, we investigate the performance of ICA 

on speech voice separation. Moreover, the proposed 

DRNN method is evaluated by the noisy speech directly. 

4.2 Results 

SAR M1-M1 F1-F1 M1-M2 F1-F2 M1-F1 

2 41.6266 39.3103 67.1854 39.3073 55.2952 

3 41.5690 39.2454 67.1785 39.3059 55.6942 

4 41.5636 38.1494 67.1784 39.3059 55.6942 

Table 1. The average SAR evaluation of FastICA Algo-

rithm. 

In Table. 1, the rows represent the number of channels 

that is 2, 3 and 4, respectively.  Mi and Fi (i=1, 2) repre-

sents the speaker. The table indicates that the separation 

results of two human voices. There are five clean speech-

es for each person in the datasets. Instead of providing all 

three valuation criterions SAR (Sources to Artifacts Ra-

tio), SDR (Source to Distortion Ratio) and SIR (Source to 

Interferences Ratio), the results in Table. 1 only presents 

SAR because the results have same SAR and SDR value 

and SIR is positive infinity for all data. Therefore,we 



  

 

can know that every separation has very high SAR, which 

means the separation results are significantly good. 

Moreover, the number of mixing inputs has little influ-

ence on the separation results. In addition, as changing 

the voice spoken by different speaker, there is no obvious 

indication that the timbre will affect the separation result. 

However, our evaluation need more diversity speech sep-

aration data, such as daily conversation.  

While for the ISA model, we try to build corresponding 

algorithm as indicated in [7]. However, our algorithms 

didn’t achieve good separation results for lack of effec-

tive clustering methods. So we use the experiment results 

presented by Virtanen to give an overview of this method 

[22]. Virtanen implemented it on pitched instrument and 

drum sound separation. The test signals contain several 

sound production mechanisms, variety of spectra, and al-

so modulations, such as vibrato. Mixture signals were 

generated by choosing a random number of pitched in-

strument sources and a random number of drum sources. 

And each source was scaled to obtain a random total en-

ergy between 0 and 20dB. The total number of test mix-

tures was 300. The results indicate that about 3.6dB over-

all signal to noise ratio can be achieved by ISA model. 

While ISA does provide an effective means of separating 

sound mixtures in monaural conditions, it also have some 

limitations. Combining Principle Component Reduction 

(e.g. the process of building subspaces in the preceding 

discussion) and ICA, ISA not only makes use of the 

properties of each method but also retains the problems 

associated with each method. First is ICA’s indeter-

minacy with regards to source ordering and 

scaling. In addition, the variance-based nature of 

PCA inherently biases the analysis towards sources of 

high amplitude, which can make it difficult to recover 

sources of low amplitude. What’s more, the sound with 

clear frequency characteristics, such as the harmonic 

structure, will achieve better separation results. 

 

At last, we apply the purposed DRNN model on the 

database. Ten noisy speech were tested and the average 

signal to distortion ration, source to interference ration 

and source to noise ration are 7.40, 12.51 and 7.56, re-

spectively. Table 2 shows 3 evaluation outcomes of ten 

noisy speech. The SNR of these 3 examples are 3dB, 5dB 

and 5dB respectively.  

Objects SDR SIR SAR 

1 4.19 2.89 8.95 

2 7.11 12.81 7.40 

3 7.27 11.51 7.41 

Table 2.  SDR, SIR and SAR evaluation of DRNN 

5. CONCLUSION 

In this paper, we introduce two traditional methods, ICA 

and ISA for multi-channel and monaural condition speech 

separation, respectively. The ICA model shows signifi-

cant clear speech separation. Meanwhile, the number of 

input mixing, that is the number of channel in some de-

gree, won’t influence the separation results clearly. And 

the differences in the timbre of speech won’t affect the 

separation results as well. For ISA model, we introduce 

the basic theory and give a brief view on the pitched in-

struments and drum separation performance. Finally, we 

investigate the state of the art deep learning model, the 

DRNN, on noisy speech separation. It achieves better re-

sults than other linear models. However, the DRNN 

method requires many training data to train to extract the 

features ahead of time. Combining the methods presented 

in this paper, we can solve the cocktail problem in some 

specific situations. 
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[2] Ö. Yilmaz and S. Rickard, “Blind separation of 

Speech Mixtures via Time-Frequency Masking,” 

IEEE Transactions On Signal Processing, vol. 52, 

no. 7, 2004. 

[3] J. F. Cardoso and A. Souloumiac, “Blind 

beamforming for non-Gaussian signals,” IEE 

Proceedings-F, vol. 140, no. 6, 1993. 

[4] P. Comon, “Independent component analysis, a new 

concept?” Signal Process., vol. 36, no. 3, pp. 287–

314, 1994. 

[5] P. Smaragdis, “Blind separation of convolved mix-

tures in the frequency domain,” Neurocomputing, 

vol. 22, pp. 21–34, 1998. 

[6] A. Hyvärinen and E. Oja, “Independent component 

analysis: algorithms and applications,” Neural Net-

works, vol 13, pp 411-430, 2000. 

[7] M. A. Casey and A. Westner, “Separation of mixed 

audio sources by independent subspace analysis,” in 

Proc. Int. Comp. Music Conf., Berlin, Germany, 

2000, pp. 154–161.  

[8] J. C. Brown and P. Smaragdis, “Independent 

component analysis for automatic note extraction 

from musical trills,” J. Acoust. Soc. Amer., vol. 115, 

pp. 2295–2306, May 2004. 

[9] I. Orife, “A rhythm analysis and decomposition tool 

based on independent subspace analysis,” Master’s 

thesis, Dartmouth College, Hanover, NH, 2001. 

[10] M. A. Casey, “MPEG-7 sound-recognition tools,” 

IEEE Trans. Circuits Syst. Video Technol., vol. 11, 

no. 6, pp. 737–747, Jun. 2001. 

[11] Y. Ephraim and D. Malah, “Speech enhancement 

using a minimum-mean square error short-time 

spectral amplitude estimator,” IEEE Transactions on 

Acoustics, Speech and Signal Processing, vol. 32, no. 

6, pp. 1109–1121, Dec. 1984. 



  

 

[12] Y. H. Yang, “Low-rank representation of both 

singing voice and music accompaniment via learned 

dictionaries,” in Proceedings of the 14th 

International Society for Music Information 

Retrieval Conference (ISMIR), 2013. 

[13] D. D. Lee and H. S. Seung, “Learning the parts of 

objects by non-negative matrix factorization,” 

Nature, vol 401, no 6775, pp 788-789, 1999. 

[14] Y. Wang, “Supervised speech separation using deep 

neural networks,” Doctoral thesis, 2015 

[15] P.-S. Huang, M. Kim, M. Hasegawa-Johnson, and P. 

Smaragdis, “Deep learning for monaural speech sep-

aration,” in Proceedings of the IEEE International 

Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), pp. 1562–1566, 2014. 

[16] P.-S. Huang and M. Kim and M. Hasegawa-Johnson 

and P. Smaragdis, “Singing-voice separation from 

monaural recordings using deep recurrent neural 

networks,” in Proceedings of the 15th International 

Society for Music Information Retrieval (ISMIR), 

2014. 

[17] P.-S. Huang and M. Kim and M. Hasegawa-Johnson 

and P. Smaragdis, “Joint optimization of masks and 

deep neural networks for monaural source 

separation,” Ieee/Acm Transactions On Audio, 

Speech, And Language Processing, vol. 23, no. 12, 

2015. 

[18] X. Lu, Y. Tsao, S. Matsuda and Chiori Hori, 

“Speech enhancement based on deep denoising 

autoencoder,” Interspeech, 2013.  

[19] Y. Hu and P. C. Loizou, “Subjective comparison and 

evaluation of speech enhancement algorithms,” 

Speech Communication, vol 49, pp 588-601, 2007. 

[20] P. G. Shivakumar and P. Georgiou, “Perception 

optimized deep denoising autoencoder for speech 

enhancement,” Interspeech, 2016. 

[21] S. Dubnov, “Extracting sound objects by 

independent subspace analysis,” ASE 22nd 

International Conference on Virtual, Synthetic and 

Entertainment Audio, 2002. 

[22] T. Virtanen, “Monaural sound source separation by 

non-negative matrix factorization with temporal 

continuity and sparseness criterion,” IEEE 

Transactions On Audio, Speech, And Language 

Processing, vol. 15, no. 3, 2007.  

 
 

 

 

 

 


