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ABSTRACT

Speech enhancement has a vast amount of demand in many
areas. Previous works were usually formulated using time-
frequency representations. Time-frequency representation
has two limitations: firstly, it is a trade-off to choose be-
tween time and frequency resolutions; secondly, phase in-
formation is usually discarded and is very difficult to work
with. This project serves as an investigation for building
a system that operates on raw audio waveforms directly.
We proposed a lattice-ladder structured neural networks
with gated dilated convolutional layers as its basic build-
ing block. We performed training on the dataset we built,
with a lot of operations for data augmentation. We evalu-
ated this system with unseen speeches, unseen noises with
unseen room impulse response. Our results indicate that
this approach is able to produce better speech for low input
quality. Due to limited time and resources and high com-
putational burden, many properties of this kind of systems
are still remained for further investigation.

1. INTRODUCTION

Real world speeches are noisy. Increasing the overall qual-
ity, at least intelligibility has a vast demand nowadays, in
areas such as communications, hearing aids, speech recog-
nition and content production, etc. The goal of our project
is to explore both traditional statistical spectrum domain
methods and methods formulated with neural networks for
speech enhancement.

Speech Enhancement is traditionally formulated as a
source separation problem, ie., separating clean speech
part from its mixture with noises. Due to the the ap-
proximate (w-)disjoint orthogonality of speech signal [12],
which corresponds to the assumption that speech signal
can be separated by masking the spectrogram, methods us-
ing time-frequency representations are prevalent. Masks
can be estimated with either statistical estimation [3] [7]
[1] or a neural network [6] [14].

With the increasing popularity of convolutional neural
networks which is designed and restricted to learn time-
invariant operators, and with the idea of building some-
thing from scratch (Tabura Rasa), some attempts [8] [10]

c© Yujia Yan, Ye He. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: Yujia
Yan, Ye He. “Speech Enhancement: an investigation with raw waveform”
.

have been made trying to directly work on time domain
with raw audio waveforms and without any notion of the
well-established set of basis, namely, the Fourier Trans-
form. Directly working on the time domain may have
the potential to overcome the limits (time-frequency un-
certainty, phase reconstruction, etc.) of using a time-
frequency representation. However, training a system of
this type is time consuming which requires a huge amount
of resources.

In this project, we made an investigation in this direc-
tion. We proposed a lattice-ladder structured neural net-
work inspired by the IIR lattice filter implementation. We
performed training for this system on the dataset we built
from varies sources, with diversified speech quality.

This paper is structured as follows: In section 2, we give
a description on the systems we propose and implement in
this work. In section 3, We talk about the datasets and data
augmentation process we used we present evaluations on
algorithms we implemented.

2. ALGORITHM DESCRIPTION

2.1 Wiener Filtering

We implemented a spectral domain Wiener filter to work
as our baseline method. Wiener filter gives an estimate
of power spectrum which has the minimum mean square
error (MMSE) to the target signal. MMSE is more suit-
able for speech signal, compared with directly subtract-
ing estimated amplitude spectrum of noise(can be over-
subtracted), since large errors will be reduced more and
small errors will be reduced less. Human ears may not be
sensitive to the small errors, which in turn, less artifacts
will be introduced.

For filtering out independent and additive noise, the fre-
quency response of the filter is given by:

H(Ω) =
Pxx(Ω)

Pyy(Ω)
(1)

where Pxx(Ω) is the power spectral density of the signal x.
Hence, the spectrum of the estimated signal is

S(Ω) = H(Ω)Y (Ω) (2)

where S(Ω) is the spectrum of the estimated signal and
Y (Ω) is the noisy signal.

We process with the above formula frame by frame. The
estimated signal at time k and frequency bin m, Sm(k) is
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Figure 1: Gated Convolutional Layer

given by
Sm(k) = Hm(k)Ym(k) (3)

where

Hm(k) =
Pxx,m(k)

Pyy,m(k)
(4)

However, the power spectrum of the clean signal, Pxx,m is
unknown. Therefore, we have to estimate it from signal.
Equation 4 can be reformulated with SNR term [3]

Hm(k) =
Pxxm(k)

Pxxm(k) + Pnnm(k)
=

ηm
1 + ηm

(5)

where ηm =
Pxx,m(k)
Pnn,m(k) , the Signal-to-Noise Ratio. Then

the assumption is that one estimate of SNR actually exe-
cuted at previous time is close to the target signal of the
current frame. Then we have a smoothing equation for ηm

ηm = αη
|Sm(k − 1)|2

Pnn,m(k)
+(1−αη) max(0, γm(k)−1) (6)

where γm(k) =
Pyy,m(k)
Pnn,m(k) is a posteriori SNR and αη is

a smoothing parameter. The noise power spectrum Pnn is
estimated directly by taking medians of all frames in the
spectrogram.

2.2 Convolutional Lattice Neural Network

The proposed neural network structure is inspired by tradi-
tional lattice filters, which implements an IIR filter in a way
that signal goes though a series of simple all pass sections,
after which, the output of the filter is a linear combination
of the outputs from these all-pass sections.

2.2.1 Gated Dilating Convlutional Layer

We incorporate similar idea as used by Wavenet [8], but the
difference is that how we apply gating. The basic layer in
our architecture uses dilated convolution without pooling.
The dilated convolution is defined as

(x [∗]k y)[n] =
∑
m

x[m]y[n− km] (7)

where [∗]k represents dilated convolution with dilating step
k, which can be intuitively explained as convolving with
skip step k. There are no downsampling operations after
the convolution. Therefore the length of the input and out-
put signal can be the same if zero paddings are used. This
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Figure 2: The lattice Architecture

enables us to design a layer that has a highway/residual
connection. Denote the two inputs and the output (shown
in figure 1) of our layer as x1, x2, y respectively,

g = σ(wgate1 [∗]kx1 + wgate2 [∗]kx2 + bgate)

ỹ = c tanh(wout1 [∗]kx1 + wout2 [∗]kx2 + bout)

y = g ◦ ỹ + (1− g) ◦ (x1 + x2)

(8)

where σ(·) is the sigmoid function,c is the scale parameter,
and ◦ is the element-wise product. g can be interpreted as
the gate to determine which portions of the input and the
transformed input should pass the layer.

2.2.2 The lattice-ladder Architecture

Our neural network architecture is shown in figure 2. In
this architecture, we have M columns of dilating convolu-
tion chains with alternating directions. The dilation step k
for each dilating convolutional layers is calculated as fol-
lows

k = basedilation−1 (9)

the filter width in each convolutional layer is chosen ac-
cording to base such that it at least covers the entire span of
base, which is essential to build the whole receptive field.

In addition, we have skip connections between consec-
utive columns to allow the signal bypass the lattice and
make gradient back-propagating easier.

The outputs of each gated dilating convolution layers in
the last column are concatenated and then passed through
one length-1 convolution layer for obtaining the final out-
put for this network.

Each column can be viewed as a neural network coun-
terpart of a classical filterbank. Columnwisely, they form
a multi-layered filterbank structure.

3. IMPLEMENTATION AND EXPERIMENT

3.1 Dataset

Our dataset have three pieces: clean speech(clean), addi-
tive noise(noise), and room impulse responses(ir). Room
impulse responses here are not served as convolutional



Sources
CLEAN 100hours of Librispeech [9], THCHS-30 [2]
noise MUSAN [13]
IR MUSAN [13], Simulated Room IR [5]

Table 1: A simple table

noise we want to deduct(known as dereverberation), but
as a way to make variations to noises.

We built our dataset from various sources. Table 1 gives
details on where they comes from. We then reserve some
samples from the whole dataset exclusively for generating
validation and test data. Note that our data set includes
both English and Chinese Speeches for training. How-
ever Chinese Speeches are not used for evaluation and they
are simply a grub-and-place data for regularizing what is
learned in the neural network.

3.2 Data Sampling

All samples are generated following procedure outlined in
algorithm 1. Samples generated by this data augmenta-
tion algorithm are actual samples we use. During training,
samples are generated on the fly in background threads. A
queue with maximum size of 1000 is used for storing gen-
erated samples during training. A set of 500 samples is
generated for validation and test set respectively with their
exclusive raw samples.

We choose parameters in our data generation process in
order to diversify the speech quality in our dataset, and to
have a wide range in metrics we use.

Algorithm 1 Generating data from all pieces of data
procedure SAMPLEACLIP

randomly select a clip of clean speech x
perform pitch shifting and time stretching on x, with

ratio ∼ U [0.9, 1.1]
sample k ∼ U [0, 18]
Initialize n to be zero vector
for i = 0: k do

select a random noise clip
perform pitch shifting and time stretching on x,

with ratio ∼ U [0.9, 1.1]
sample a random room impulse response and ap-

ply it to the noise clip
apply random spectral envelope to the noise clip
add this clip to n

end for
Sample a SNR value
mix x and n according to SNR
sample a loudness value
adjust the mixture to the loudness just sampled, ad-

just the clean speech clip accordingly
return the clean speech clip and the final mixture

end procedure

3.3 Neural Network Training

We trained our neural network with 6 columns, dilate base
2 and dilate levels k = 16. Each convolutional layer out-
puts 8 channels. We applied Dropout and gradient noise
for regularization. For training, block size of 3 seconds au-
dio is directly fed into the neural network. Due to limited
time and resources(ie., GPU memory, training time, etc.),
we use Adam Optimizer with batch size 1. We use mean
square error (MSE) as the objective function

min
θ

1

2
||yGT − fθ(x)||22/N (10)

where yGT is the clean speech, f is our system, θ is the
parameters we want to optimize, and N is the length of
points in the waveform. We also experimented on weight-
ing the objective function with A-weighting Curve [4] and
a combination with Kullback-Leibler divergence on spec-
trogram. However, it does not improve the result.

3.4 Evaluation Metrics

In this work, we use PESQ and SSNR as our metrics to
evaluate the results. PESQ [11] is a standard evaluation
methods. We use the wide-band version in its reference im-
plementation which outputs a MOS-LQO (Mean Opinion
Score - Listening Quality Objective) ranging from 1 to 5.
The Segmental Signal-to-Noise Ratio (SSNR) used in this
work is calculated by firstly framing the signal, secondly
calculating the SNR frame by frame, and then averaging
certain frames that are within the range of [−10, 35]db.

3.5 Results and Discussion

Unlike most works on speech enhancement, we do not
evaluate the system with the mean of metrics on selected
data set: we are interested in how the quality of the output
will change according to different levels of the input qual-
ity. Our results are shown in figure 3 for PESQ, and figure
4 for SSNR. From the result we can see that our neural
network approach performs better when the quality of the
input is low. Performances of both methods drops with in-
creasing input quality. This phenomenon is caused by the
imperfection of reconstruction. From our observation, the
degeneration of quality is due to the loss of high frequency
components in the denoised version produced by our neu-
ral network. It may have three causes: firstly, the model
size we use(limited by time and resources we have) may
not have enough capacity resulting in under-fitting of our
model; secondly, the model is not well trained(also limited
by time and resources we have); thirdly, the MSE objec-
tive penalizes too much for the low frequencies and for a
dataset with many samples of extremely low quality, it may
be more conservative to focus more on the low frequency
components.

4. CONCLUSION

In this project, we proposed a gated dilated convolu-
tional lattice-ladder neural network for speech enhance-
ment, which works directly on raw audio waveforms. We
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Figure 3: PESQ results: raw PESQ score versus
input PESQ(above), PESQ improvement versus input
PESQ(below)
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Figure 4: SSNR results: raw SSNR score versus
input SSNR(above), SSNR improvement versus input
SSNR(below)



trained and evaluated this system with the dataset we built
that has a wide range of quality. The result produced on
unseen speeches, unseen noises with unseen room impulse
responses suggests that our proposed model is able to out-
perform our baseline Wiener filter for inputs with low qual-
ity. Operating directly on raw audio waveforms is still re-
mained for further investigation.
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