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ABSTRACT 

Pipe organ stop identification presents both a unique        
problem and a unique advantage in the instrument        
identification field. Most instrument identification     
algorithms do not work well when the instruments are         
playing the same note due to the overlap in identifiable          
properties (peaks in the spectral or cepstral domain). This         
is typically a minimal problem since instruments rarely        
play in unison for any length of time. However, because          
multiple pipe organ stops are frequently played from the         
same keyboard note, the problem of identifying unison        
instruments comes up frequently. The advantage to pipe        
organs is that they employ a non-expressive mechanism        
to produce sound causing the timbre of each note to be           
remarkably stable. This paper attempts to take advantage        
of this stability to train a note “dictionary” matrix from          
recorded training audio using non-negative matrix      
factorization. The unknown stops in testing audio are then         
identified by evaluating a sparse activation matrix       
obtained via the LASSO algorithm (Least Absolute       
Shrinkage and Selection Operator) and the trained       
dictionary matrix. The results can be viewed as a graph or           
through a GUI designed to display the predicted stops in          
time with the audio they were predicted from. 

1. INTRODUCTION 

1.1 A Brief Description of Pipe Organs 

Pipe organs, like the modern digital keyboard, allow the         
player to select different sounds with which to play by          
turning on a ‘stop’. Unlike the modern keyboard, multiple         
stops can be turned on at once. This means that for each            
note that is depressed on the keyboard, a pipe will sound           
for each stop that is turned on.  

There are four main families of pipe organ stops:         
Principals (the typical organ sound), Strings, Flutes, and        
Reeds. Although most of these sound like orchestral        
instruments (both in name and in timbre), they are all          
pipes (Principals, Strings, Flutes) or beating reeds with        
resonators (Reeds). Any instrument names used in this        
paper, unless specifically indicated otherwise, refer to       
organ stops, not orchestral instruments.  

Each stop corresponds to a ‘rank’ (group) of pipes that          
is played by allowing pressurized air to flow through the          
pipe associated with the desired note. Since the        

pressurized air in pipe organs comes from a reservoir         
maintained at a constant pressure rather than the human         
lungs, pipe organs are not dynamic instruments. Each        
time a pipe is played, it sounds exactly the same no           
matter how quickly or hard the key playing it is          
depressed.  

Because pipe organs are frequently historic      
instruments (some are hundreds of years old) and not well          
regulated, each stop on each pipe organ is unique,         
although some are very similar. Thus, even though a         
single pipe organ might have multiple flute stops        
(Rohrflӧte, Spilflӧte, ect), they will not sound the same.         
Likewise, if two different organs have stops with the         
same name (say each organ has a Rohrflӧte for example)          
they also will not sound exactly the same.  

Finally, organ stops sound at different octaves       
indicated by a number next to the stop name. This          
number is the average length in feet of the lowest note,           
and thus the longest pipe, of the rank. An 8’ stop has the             
same octave pitch as a piano. When the A4 key is           
pressed, the resulting pitch is 440Hz. Each time the         
number is halved, the pitch goes up an octave. When the           
A4 key is pressed with a 4’ stop on, the resulting pitch is             
880Hz.  

 

1.2 Instrument Identification Methods 

The current prominent instrument identification methods      
are hidden markov, source filter, cepstral coefficient, and        
neural networks. Hidden markov models work well on        
single instrument identification, but rapidly lose accuracy       
when polyphony is introduced. The source filter and        
cepstral coefficient methods work well for polyphony,       
but do not handel instruments played in unison or octaves          
very well. Since unison between stops is a common         
occurrence in pipe organs, these methods were avoided.        
Neural networks, while quite promising, are time       
consuming to train and require more annotated training        
data than I have access to.  

I decided to use non-negative matrix factorization       
(NMF) because it takes advantage of the additive        
linearity of the fourier transform. Just as a mixture audio          
is the sum of all the monophonic audios, a mixture          
spectrogram (as long as it is not in dB) is the sum of all              
the monophonic spectrograms. If I created a dictionary        



 
 
with an element corresponding to the spectrogram of each         
note of each stop, I could use NMF to determine which           
combination notes are being activated when in a given         
test audio clip to produce the mixture. Since the audio          
(and thus the spectrogram) is just the sum of the different           
sops being played, modeling it as a linear combination of          
dictionary elements makes sense.  

In practice, the stops are too similar for this to work           
well. The dictionary can be easily created, but the         
activation matrix resulting from NMF is too muddled. All         
stops activate for a single note instead of just the stops           
being played. To combat this, I used the LASSO         
algorithm to create a sparse activation matrix. This        
reduces the overall activations to clean up the muddle         
while still remaining flexible enough to allow the stops         
that are detected to be activated 

2. METHOD 

2.1 Non-Zero Matrix Factorization 

The dictionary is comparatively easy to make for an         
organ. Each note of each stop is unique and has no           
dynamic variation, so the training data does not require         
multiple iterations of the same note. A drawback is that a           
separate dictionary must be made for each organ since the          
stops on each organ are unique.  

To make the dictionary, I recorded a chromatic scale         
from lowest note to highest note for each stop. I          
converted it to a spectrogram using a hamming window         
of 100ms (4410 samples) and a 50% overlap. I then used           
the recorded scale and NMF to train a dictionary with the           
same number of elements as number of keys (58 on the           
keyboards and 30 on the pedalboard). To make sure the          
dictionary elements were harmonically coherent, I used       
the harmonic comb initiation of the dictionary matrix W         
as described in [1] (see fig. 1)and the euclidean distance          
multiplicative updates for W and H from [2].  

 
W ia ← W ia
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Where ​W is the dictionary matrix, ​H ​is the activation          
matrix, and ​V is the matrix being factored (the         
spectrogram of the input audio). 

The euclidean distance method was required to prevent        
division by zero since many of the W elements are          
initialized (and remain) at zero in the harmonic comb         
initialization method. The advantage to this method of        
forming the dictionary is being able to keep the input as           
an entire scale instead of having to split it into individual           
notes. Once dictionaries for each stop were trained, I         
combined them into a master dictionary by concatenating        
the matrices.  

 

Figure 1​​. Harmonic comb initiation of the dictionary        
matrix W 

2.2 LASSO Algorithm 

To calculate the activation matrix, I used the built in          
LASSO function in matlab that computes the algorithm        
as follows: 
 

  (3) 
 

Where N is the number of observations, is the response       yi    
at observation ​i​, is a data vector of length ​p at   xi         
observation ​i, ​𝜆 is a nonnegative regularization parameter,        

and are a scalar and a vector of length ​pβ0  β           
respectively [4]. 

The inputs were the trained dictionary as ​x and each          
frame of the mixture spectrogram as ​y​. The activation         
vector for each frame was the first column of the output           
matrix of the LASSO function, min and . To make      β0  β    
the activation matrix, each activation vector was placed in         
its corresponding frame column.  

The LASSO function in matlab is pretty slow before         
running it for each 100ms frame of an audio clip, so I            
sped things up by limiting the number of iterations in the           
LASSO algorithm to 100. I found this did a good job of            
finding the activations without taking forever. I also        
removed the window overlap when calculating the       
mixture spectrogram to reduce the total number of frames         
by 50%.  

2.3 Stop Determination 

To determine if a stop is being played, the rows of the            
activation matrix are divided into sections representing       
each stop. The maximum activation value of each frame         
is taken for each section and thresholded to determine if          
the corresponding stop is active. The threshold is set at 50           
from observation of the data. See fig. 2 for an example. 



 
 

 
Figure 2​​. Max activation value by stop 

3. CONCLUSIONS 

3.1 Testing and Accuracy 

The proposed method was tested on recordings from        
the Wahl practice organ at the Eastman School of Music.          
Note dictionaries were trained for the following stops:        
Pedal 8’ Bourdon (a flute stop), First Manual 8’ Spilflöte          
(a flute stop), First Manual 4’ Principal (a principal stop),          
Second Manual 8’ Gedeckt (a flute stop), and Second         
Manual 4’ Rohrflöte (a flute stop). The dictionaries were         
tested on 11 recordings ranging from 3 to 12 seconds.          
Each recording contained a combination of 3 stops. 

While the data is very noisy, the results were         
surprisingly accurate. The overall precision was 0.729       
with a recall of 0.502 and an F1 score of 0.594. This is             
lower than the best F1 score of 0.661 for multi source           
instrument identification in [3], but remarkably close.  

Breaking down the F1 score by stop reveals        
significant variation. This variation correlates to the       
number of appearances of each stop in the testing data as           
shown in table 1. A larger data set for testing is clearly            
needed to determine the true accuracy of this method. 

Stop Name Precision Recall F1 
Score 

Number 
of audio 

8’ Bourdon 0.809 0.391 0.527 6 

8’ Spilflöte 0.892 0.524 0.660 9 

4’ Principal 0.660 0.437 0.526 5 

8’ Gedeckt 0.929 0.524 0.670 10 

4’ Rohrflöte 0.447 0.674 0.537 4 

 
Table 1.​​ Precision, Recall and F1 score by stop 

3.2 Presentation 

While the graph in fig. 2 is clear, it is tedious to read,             
especially while trying to line it up to music. To make           
this easier, I have made a GUI presentation via a matlab           
app to show what stops are on while the music is being            
played. A screenshot of the GUI at frame 66 of fig. 2 is             
shown in fig. 3. 

This GUI is designed to be easily understandable by         
organists in order to aid in education. An important part          
of learning to play the pipe organ is learning how to           
select appropriate stops for a piece. This is learned         
primarily by listening to and examining what more        
experienced organists do. An algorithm to identify stops        
and an easily understandable presentation of the results        
would be a great aid in pipe organ pedagogy.  

 
Figure 3​​. Display GUI at frame 65 of fig. 2 

3.3 Future Work 

I believe the accuracy of stop identification could be         
greatly improved by using a recurrent neural network        
(RNN) instead of the proposed NMF based method. A         
major identifying characteristic of a stop is the onset of          
each note. NMF, since it focuses on the sustain portion of           
notes instead of their onset, does not capture this well. A           
RNN, since it has memory, would do a better job of           
identifying this onset characteristic.  
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