
TOWARDS DNN-HUMAN REAL-TIME MUSIC IMPROVISATION

Christodoulos Benetatos
University of Rochester

c.benetatos@rochester.edu

ABSTRACT

The purpose of this project, is to explore the idea of human
performers interacting in real-time with a neural network,
to produce music. For this purpose, we created a dataset
of two-part midi musical pieces (duets) from Bachs music,
and trained two different neural network architectures, to
predict the next musical note, given the past notes of both
parts. The two different approaches that were used, are
a) a RNN architecture using LSTM cells, and b) a casual
dilated convolutional network. Even though the traditional
way for modeling sequences is using recurrent networks,
the latter and other non recurrent approaches, seem to give
similar and better results, with the additional advantage of
significant decrease in computation time.

1. INTRODUCTION

The last years we have witnessed a large amount of re-
search on using neural networks for generation purposes
and not just classification. Creating algorithms that can
generate original content and create art, is considered a
very difficult task, and in the future it may work as an im-
portant tool to enhance human creativity. In the field of
visual arts we have some very impressive examples of cre-
ativity. In [4], they used CNNs to change the style and
texture of an image, while maintaining the original content
(style transferring). Another example are the generative
adversarial networks GAN [5] which achieved of generat-
ing human faces that do not exist in reality [7].

Regarding music now, there is a long history of at-
tempts of generative systems, using many techniques such
as HMMs, or neural networks. Recently music generation
has become is a very hot topic due to the applications it
can be used. For example, a lot of companies want to gen-
erate copyright free music to reduce their costs. Many re-
searchers tried to address this problem, and the most com-
mon approach is work on a semantics level (notes) and
treat music generation as a natural language processing
problem. In this way, character level recurrent neural net-
works (RNNs) can be used directly, by considering notes
as characters. Some of the most impressive models of this
kind come from Google’s Magenta project which was cre-
ated in 2016 [1]. However most of them, either generate

c© , Christodoulos Benetatos, . Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: , Christodoulos Benetatos, . “Towards DNN-Human real-time
music improvisation ”,

music in offline fashion (i.e bidirectional RNNs), or in on-
line, but in solo configuration, without incorporating hu-
mans in the generation chain. In similar systems to ours,
like AI Duets [1], or the Continuator [8], a human per-
former and a computer are interacting, however not at the
same time, but in a call and response configuration, and
this is the basic difference with our approach.

This paper is organized as follows: In section 1 we
present the dataset we created, in section 3 we focus on
describing the architecture of the system, while in section
4 we present our results. Finally in section 5, we make our
conclusions and defining the future directions.

2. DATASET

2.1 Data collection

For the purposes of the project we needed duet pieces,
in musicXML or MIDI form, where each of the parts is
monophonic. The last requirement is used to simplify
the problem, it however limits our options regarding the
dataset. For example we could consider piano pieces as
duets (right and left hand), however rarely these parts are
monophonic. An idea was to use Bachs Chorales, which
are 371 short 4- part choral compositions (soprano, alto,
tenor, bass), and they are characterized by some useful
properties. Each part is monophonic, and each possible
pair of parts sounds good, independently of the others. In
this way, as shown in Figure 1, we can extract 12 different
duets, from each of the chorales. Using the same ratio-
nale, we used also one other kind of short compositions
by Bach, Inventions, which are 15 short two-part keyboard
pieces, where each part again is monophonic.

For the chorales, we used the corpus in music21 library,
while for inventions we downloaded the musicXML files
from MuseScore . We had to parse them, organize them
in duets, convert the notes in the proper representation for
the neural networks. We only parsed 346 from the 371
chorales of the music21 corpus, and all of the inventions.
For each of the duets we transposed them in all the 12 mu-
sical keys. This helps the system to be key invariant. An-
other way to achieve that is by transposing all the pieces
in the same key, i.e C major. While this solution works, it
limits the musician to play melodies only in that key.

The result is that for each of the four-part chorales, there
are 12 different permutations of two-part pieces, and 12
transpositions so the total number of duets is 12∗12∗371 =
49824. For the experiments on the paper we did not use in-
ventions, and from chorales we used only the permutations



Figure 1: A chorale example consisting of four mono-
phonic parts. Taking all possible combinations of 2 parts
we can create 12 duet pieces.

of the two more musical interesting parts (soprano, bass).
The reason we reduced the dataset is due to the limited
time to train the models.

2.2 Data Representation

2.2.1 Pitch, Duration, Articulation

Each of the notes in a melody, has different relative time
duration, indicated by specific symbol. Omitting this infor-
mation and encoding only the pitch of the note, the result
will not be able to model rhythm structures. Additionally,
we want the DNN to calculate the next note on constant
time rate. We define the duration of a sixteenth note, as the
minimum time step. This means that notes with relative
duration less than a sixteenth should be removed. How-
ever this is not a problem in our dataset since in chorales
the durations never go beyond that limit. For the the notes
of duration larger than that, one common approach is to
replace the remaining sixteenths of a note, with a hold/tie
symbol, i.e ”1”. Trying this approach we were not able to
train the DNN. The reason is that, since in chorales, the
most common note duration is either quarter or eighth , the
sequence of notes contained mostly 1 symbols, and some
sparse MIDI numbers for the pitch (fig2 top). This had
as a result, the DNN to learn to predict mostly 1 symbols
without any information about the pitch. The solution that
worked in this project, was to augment the MIDI symbol
of each note with the information about the articulation i.e
hit 1, or hold 0 (fig2 bottom). In this way, we reduce the
imbalance of the classes, and also even if the DNN starts
predicting hold symbols without having any hit before, we
still have the information of the pitch.

2.2.2 Embeddings

After defining the representation of the notes, the next step
is to create the embeddings for the DNNs. We use an em-
bedding layer to enforce our system to encode the relations

Figure 2: Representation of the notes, containing pitch
(MIDI) and articulation information (hit/hold). Instead of
using the same ”hold” symbol for all pitches (top line), we
use different for each note (bottom line).

Figure 3: The embedding layer was jointly trained with
the neural network. N is the note sequence length, 2 is the
number of parts, 115 is our note vocabulary size and 128
the embeddings size.

between each note, in a way similar to how embeddings
are used for word encoding. ”Athens” is more similar to
”Greece” than to ”China”, and in the same way, note C1
more related to C2 than A#1. After examining the dataset,
we observed that only 57 MIDI numbers were used (30 -
86) so the total note classes are 57 ∗ 2 + 1 = 115 (each
note has the hit and hold version, plus one symbol for
rest). We used embedding size of 128, and concatenation
of the embeddings for each of the two parts (Figure 3. At
each timestep the output of the DNNs will be a vector of
size 1x115 with the probability distribution over each class
(note).

3. MODEL ARCHITECTURE

3.1 Overall Structure

We can see the overall structure of the system in Figure 4.
In real life music improvisations, each performer takes ac-
tions based not only on his previous actions but also on the
past actions of the other performers. In a similar way, the
DNN predicts the next note based on both its own and hu-
man’s previous generated notes. We use a sliding window
over the previous notes of both parts and vary the size of
the sliding window from 16 to 64 depending on the type of
DNN

Figure 4: A human performer and a DNN interacting to
generate a two-part music melody. We train the DNN to
predict the next note of its corresponding part, based on
the past generated notes of both parts.



Figure 5: The architecture of the LSTM network, and the
scheduled sampling schema.

More specifically, we are using two different mod-
els. First a classic NLP approach for sequence
modeling, recurrent neural networks (RNN) with long
short term memory (LSTM) cells, and a causal di-
lated convolutional neural network (cd-CNN). Suppose

that X(1) =
[
x
(1)
1 , x

(1)
2 , . . . , x

(1)
t

]T
and X(2) =[

x
(2)
1 , x

(2)
2 , . . . , x

(2)
t

]T
, are the first and second parts of

a sliding window of size t from a training sample, and
lets consider that the DNN is responsible for predicting the
note of the second part. The ground truth next note is x(2)

t+1,
while the predicted by the model is x̂

(2)
t+1. We use cross

categorical entropy loss function, since we treat the note
prediction model, as a classification one, where classes are
each of the possible notes. Finally, during, training, instead
of just using teacher forcing, we experiment with a tech-
nique called scheduled sampling [3]. In teacher forcing,
at each timestep, we feed back the ground truth x

(2)
t+1, to

be conditioned for the next prediction, while in scheduled
sampling we feed back the predicted output x̂(2)

t+1, with a
probability that changes through training time (curriculum
learning).

3.2 LSTM

This model of recurrent NNs [6], is used to solve the
problem of vanishing and exploding gradients that simple
RNNs have, and they are capable of learning long-term
dependencies. They can be used in many schemas, de-
pending on the problem, such as one-to-many (image cap-
tioning), or many-to-many (sequence translation). In our
model we use the many-to-one architecture 5, and we train
using truncated backpropagation through time with k1 = 1
and k2 = 16 [9], meaning that, for every 1 timestep we do
backpropagation through time for 16 steps (size of the slid-
ing window). The parameters we tried are 2 stacked layers
and 512 hidden units. A fully connected layer is used to
convert the lstm output size from 512 to 115.

Figure 6: A dilated causual CNN, for predicting the next
note based of a sequence. The number of layers depend
on the size of the window, and we gradually increase the
dilation factor exponentially, except for the last layer.

3.3 cd-CNN

As we mentioned before, there is a trend in replacing
RNNs with CNNs for sequence modeling [2]. Even though
CNNs are feed forward models without internal memory
cells to capture temporal information, we can take advan-
tage of their computational efficiency and do calculations
using long history windows. For example, cd-CNNs using
a sliding window of 64 timesteps, train at the same time
as RNNs when using window of 16 timesteps. The term
causual means that the prediction at each timestep t is the
convolutional result of past only elements, while the dila-
tion is a technique to increase the receptive field of each
stacked CNN layers, by using a kernel that skips timesteps
6. If dilation = 1 then we have the classic convolution.

These cd-CNN blocks are used in the core of a very
popular architecture, WaveNet [10], as well as in temporal
convolutional networks (TCN) [2]. In our implementation
we used a simplified version of the above, without gated
convolutions and residual blocks. We do not use padding
at each layer, so the sequence size decreases layer by layer,
until it becomes one. Also we used stride = 1 instead of
2 in the TCN paper. We assume that the input window size
will always be a power of 2, such as N = 2i. In this case,
for kernel = 3, the total number of layers will be i−1. We
use exponential increased dilation factor for the first i − 2
layers, while for the last, we always use dilation = 1 and
kernel = 2.

We built this network in a similar way with the LSTM
approach, so it would be easy to treat them the same way.
For example, we can easily apply as before, teacher forc-
ing, and schedule sampling schemes, even if these are tech-
niques developed for recurrent networks.



4. RESULTS

Due to time limitations, we did not let the DNNs to train
for many epochs, and we did not fine tune the model pa-
rameters, however we were able to get some very inter-
esting results with both the architectures. First of all,
we split our dataset in training (80%), validation (10%)
and testing (10%) and we were able to to achieve 91.3%
accuracy in the testing dataset, using with cd-CNN with
dropout = 0.2 and N = 32. In Figure 7a, we can see the
loss values during the training of cd-CNN.

About LSTM, the best accuracy score that we achieved
with LSTM was 88.9%, using dropout = 0.2 and N = 16,
however we had some difficulties during training due to
overfitting. In Figure 7b, we can see the validation loss
increasing, without affecting the accuracy. However we
expect to see accuracy decreasing when training for more
epochs. However, classification accuracy is not a very
meaningful metric for music generation, since the wrongly
predicted notes may still make sense in a musical way.

Figure 7: Loss and accuracy on training and validation
dataset for a) cd-CNN and b) LSTM.

We should mention that we did the above evaluation us-
ing teacher forcing. Meaning that we did not let the DNNs
generate music freely, but instead, after each prediction, we
force feed the ground truth note instead of the predicted. In
a real-life scenario, DNNs condition their output on their

previous predictions. To test them in this way, first we ini-
tialize the sliding window with the beginning of chorales
from the testing dataset, and then let them freely generate
music.

In all the presented examples, the generated part is the
upper one (blue notes), and also the reference melody part
is from the testing dataset. First we select a chorale and use
the LSTM network to generate the Soprano part given the
Bass line (Figure 8a and then the opposite in 8b. Then, in
Figure 8c, we can see the generation result of the cd-CNN
network. In the case of cd-CNN,it is interesting to notice
the very nice major cadence in a D minor key, the rests,
and how nicely it starts again as a response to the theme
played by the other voice.

Also, we tried as the reference part, a melody of differ-
ent style from Chorales, the theme from the Bach’s fugue
No.2. The cd-CNN generated a response very pleasant to
listen Figure (9), with minor mistakes. On the other hand,
the LSTM did not give good results as it could not even
follow the key.

Figure 8: a), b) Generation example of the LSTM and c)
cd-CNN networks. The first bars are the initialization, and
after that, the upper part (blue) is generated. In a) the bot-
tom (reference) part is a basso voice, and in b) is the so-
prano voice from the same chorale. For c) we used the
Soprano of another chorale as reference melody.

Figure 9: The cd-CNN model was able to generate mean-
ingful melodies even when we tried a reference melody in
a style different than Chorales.

Listening to these and many more results lead us to the
following observations:

• Most of the time, both DNNs were choosing notes
belonging in the right key (the key defined by the hu-



man reference melody, but cd-CNN was more stable
in this aspect.

• Both of them were able to select the right range for
the melody. When the reference melody was in the
bass range, then the predicted output was in the so-
prano, and vice versa.

• The parts generated from cd-CNN where better har-
monically tied with the reference melody than the
LSTM, but the melodies from LSTM, where more
interesting and harmonically rich.

• Changing the sampling temperature, both models
could not follow the harmony of the reference
melody, but again the generated melodies where
very interesting, with many key modulations and
more complex rhythmic patterns.

Finally, the running time for the prediction of one note
(sixteenth) was less than 10ms for both DNNs, using an
average CPU. This means that designing an application for
real-time interaction with a human performer is feasible,
and we can achieve high BPM speeds.

5. CONCLUSION - FUTURE WORK

In this project we designed an music generation system that
is able to interact with a reference melody and generate
musically pleasant two-part melodies. In our tests the ref-
erence part was predefined, however in the future we plan
to implement a real-time application where this part will be
created instantly by a human performer using a MIDI key-
board. Of course, the dynamics of this system will be a bit
different from our offline experiments, since we expect the
human to be affected by the DNN’s output, which is a kind
of acoustic feedback that we did not considered. As for the
model architectures, the cd-CNN performed clearly bet-
ter in both objective (loss, accuracy) and subjective (music
quality) results. However, maybe a reason for that was that
we trained the cd-CNN for more epochs, and also we did
not experiment with a lot of parameters and configurations
during training, which is something that we have to do in
the future. Finally, more experiments should be done us-
ing scheduled sampling, since training models with that,
resulted an unstable loss function and slow convergence.

6. REFERENCES

[1] Magenta Project. https://magenta.
tensorflow.org/. Accessed: November 2018.

[2] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An em-
pirical evaluation of generic convolutional and recur-
rent networks for sequence modeling. arXiv preprint
arXiv:1803.01271, 2018.

[3] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. Scheduled sampling for sequence pre-
diction with recurrent neural networks. In Advances in
Neural Information Processing Systems, pages 1171–
1179, 2015.

[4] Leon A Gatys, Alexander S Ecker, and Matthias
Bethge. A neural algorithm of artistic style. arXiv
preprint arXiv:1508.06576, 2015.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial
nets. In Advances in neural information processing sys-
tems, pages 2672–2680, 2014.

[6] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

[7] Tero Karras, Timo Aila, Samuli Laine, and Jaakko
Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. arXiv preprint
arXiv:1710.10196, 2017.

[8] Francois Pachet. The continuator: Musical interaction
with style. Journal of New Music Research, 32(3):333–
341, 2003.

[9] Ilya Sutskever. Training recurrent neural networks.
University of Toronto Toronto, Ontario, Canada, 2013.

[10] Aäron Van Den Oord, Sander Dieleman, Heiga
Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew W Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw
audio. In SSW, page 125, 2016.


