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ABSTRACT

Channel normalization system aims to remove the chan-
nel effects, presented in speech signals, e.g. quantization
noise in coder or speech distortion, such system is able
to increase the robustness of automatic speech verification
systems. However, to the best of our knowledge, previous
works were usually engaged with additive noise or convo-
lutional noise. This project first creates a channel corrupted
speech dataset and applies an autoencoder neural network
architecture to serve as a baseline for deep-learning based
channel normalization.

1. INTRODUCTION

Automatic speech verification (ASV) is a significant prob-
lem in speech enhancement and is essential part to auto-
matic speech identification (ASI). Usually ASV systems
use speech signal to generalize parameterized features to
represent speakers individually based on various models
representing different properties. ASV in varying condi-
tions is a challenging problem since clean speech seldom
present in reality, some problems may result from addi-
tive noise and convolutional, while some result from dif-
ferences between channels.

In commercial ASV systems, speech signals are usually
recorded through communication devices of various quali-
ties like telephones, cell phones, laptops etc., and different
types of devices have different bandwidths and codec stan-
dards. On purpose of transmission across different chan-
nels, audio codecs algorithms are usually utilized to con-
vert analog signals into digital signals and then perform
compression. Different channels usually have different
codec standards. To cover a wider users, a lower bitrate
codec are offen applied, but at the same time, it will in-
troduce distortions and packet loss. The above mentioned
conditions may cause various channel distortions and fur-
ther affect the performance of ASV.

Neural network based ASV system have been used to min-
imize channel effects for years, this method is able to
achieve great performance as long as training data and test
data have similar properties or channel distortions have
already been set as prior knowledge. However, in real
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world, ASV usually encounter diverse acoustic situations,
and channel mismatch often happen between training data
and test data.

The most natural way to solve this mismatch problem is to
develop a supervised method by dividing channel effects
removal task into recognition step and compensation step
separately, specifically, train a universal channel classifier
first and compensate for them correspondingly.

In this project, we first applied an acoustic-simulator to
simulate channel corruption on a clean speech signal and
thereby created a channel corrupted speech dataset. In-
spired by homework 5 in the course, we develop an autoen-
coder neural network to compensate for channel distortion
and set this architecture as a baseline for future research.
This paper is organized as follows, in section 2, we intro-
duce the process of generating channel corruption dataset.
Section 3 briefly describes neural network architecture.
Details on experimental results are given in section 4. Sec-
tion 5 gives the conclusion about this project.

2. GENERATING CHANNEL CORRUPTION
SPEECH DATASET

A channel distortion simulator can be treated as an ideal
and affordable way of generating a corrupted channel
speech dataset. In acoustic simulator [3], 12 different
speech codecs are included. These comprise mainly four
types of codec standards: landline, cellular, satellite and
Voice over Internet Protocol (VoIP). For each of these con-
ditions, codec parameters such as bit rate, dtx or packet
loss as well as noise recordings, and device impulse re-
sponses can be specified based on requirements. Figure 1
shows a codec-corruption only block diagram of the acous-

tic simulator.
Landline:
G.711,G.726
Cellular:
AMR,GSM
VolP:
Silk, G.729, G.722
Satellite:
G.728, CVSD

Figure 1: Diagram for Acoustic Simulator.
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We first apply this acoustic simulator to CSTR VCTK



corpus to generate 14 different codec corruptions corre-
sponding to one clean speech.

3. METHOD: AUTOENCODER

Inspired by homework 5 [5] in computer audition class, we
will use autoencoder neural network to serve as baseline
system for removing channel corruption in this project.
Similar to codec algorithms, autoencoder neural networks
first learn to compress input data into code and then un-
compress this code back, reconstruct the original data and
simutaneously remove corruption or noise. The aim of
this autoencoder is to learn robust representations from the
data.

In mathematical notation [4], the encoder and the decoder-
can be defined as transitions ¢ and ), such that:
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In source separation task in homework 5, we are trying to
estimate a mask function for mixture for further filtering,
this whole framework can also be adapted in additive noise
speech enhancement problem.

However, in our case, codec involves data compression and
decompression, the resulting channel corruption is there-
fore nonlinear. For each time-frequency (T-F) bin in cor-
rupted speech, we are unable to infer to some degree it’s
noise or simply determine whether it is or not. Due to this
change, we have to change the loss function to fit the new
problem.

The simplest autoencoder form consists of two parts, en-
coder and decoder which are basically multi-layer percep-
trons (MLP).

Since pure fully connected layers are unclear to deal
with time series data, autoencoder with recurrent neu-
ral networks (RNN), especially long-short term memory
(LSTM)), is a solution to this problem, this architecture has
a memory block to store sequential information or tempo-
ral information.

4. IMPLEMENTATION AND EXPERIMENT
4.1 Dataset

For the corruption dataset, we applied continuously vari-
able slope delta (cvsd) modulation with 128kb/s. And
due to limited time, our orignal clean dataset only con-
tains 6626 pieces of few-second-long speech sampling at
48000Hz from 8 different people, of all the speaking cor-
pus, 2995 pieces are for training, 1225 for validation and
1631 for test.

4.2 Preprocessing

In commercial use, speech signals are usually sampled at
8kHz or 16kHz, which can speed up processing and also
training in our case. In STFT step, our window length is
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Figure 2: Fully Connected Autoencoder.

0.064s and hop size is 0.032s. To better estimate uncor-
rupted speech, we also perform log to the original STFT
spectrogram magnitude.

4.3 Neural Network Architecture

Figure 2 and Figure 3 shows the simplest autoencoder and
RNN model architecture separately.

In feedforward autoencoder architecture, the encoder re-
ceives chunks of magnitude of a short-time Fourier trans-
form (STFT) of the corrupted speech, it is consisted of two
fully connected layer with dimension of 100 and 40 sep-
arately while the decoder consists of two fully connected
layers with dimension 100 and 257. In both encoder and
decoder, we choose rectified linear unit (ReLU) as activa-
tion layer. But for the autoencoder output, since we also
want a spectrogram magnitude output, we choose a linear
output layer instead of sigmoid activation layer to avoid
bounding values between 0 and 1.

In RNN autoencoder architecture, the additional LSTM
layer takes the output of encoder as input with dimension
20; another two-layered fusing neural network concate-
nates the output of LSTM layer and encoder with dimen-
sion of 120 and 40.

4.4 Training

In both of the two neural network architecture training, we
feed 64 time frames (around 1s) by 257 frequency bins
with batchsize of 256 at a time into the network. During
training, we applied dropout with a rate of 0.025 for regu-
larization.

To train the networks, we consider mean square error
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Figure 3: Fully Connected Autoencoder with LSTM layer.

(MSE) as loss function with a learning rate of le-3, L1
loss function can also be applied here. The MSE objective
function minimize the reconstruction error of the T-F bins
of the speech source.

Due to limited time and computation resources, we only
train the two autoencoder networks on a CPU both for 100
epoches, and during each epoch we perform 500 iterations.

4.5 Evaluation Metrics

We use perceptual evaluation of speech quality (PESQ) [1]
and short time objective intelligibility (STOI) [2] to per-
ceptually evaluate our baseline channel corruption removal
system. Both are common metrics in speech enhancement
and have positive correlation with speech intelligibility.

5. RESULTS AND DISCUSSION

Figure 4 and Figure 5 show the training loss and validation
loss.
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Figure 4: MSE Loss in Autoencoder
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Figure 5: MSE Loss in Autoencoder with LSTM layer

Within this limited training epoches, we can find that
in these two architecture, both training loss and validation
loss are decreasing, which means that further training are
needed. It also can be seen that it converges slowly in later
epoches. Techniques are needed to speed up the this con-
verging. After training, the recovered magnitude of spec-
trogram from the corrupted speech in the first epoch and
100th epoch are separately shown in Figure 6 and Figure 7.

Figure 6: Estimated Spectrogram in First Epoch

Differences between first epoch and last epoch are appar-
ent by comparing Figure 6 and Figure 7. We can see that
in the first epoch, this encoder-decoder network tries to
learn an approximate shape from the clean speech and after
many epoches, more details are filled in the spectrogram. It
is expected that after relative long epoches, the estimated
spectrogram would be close enough to the clean speech,
but further optimization should be applied to speed up this
training.
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Figure 7: Estimated Spectrogram in Last Epoch

Figure 8 and Figure 9 show the PESQ improvement and
STOI on test set after 100 epoch training. From the PESQ
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Figure 8: PESQ

curve and STOI curve, we can see the improvement from
corrputed speech to recovered speech to some degree. The
average PESQ improvement in simple autoencoder is 0.46
and 0.49 for autoencoder with LSTM layer.

6. CONCLUSION

In this project, we develop an autoencoder baseline to com-
pensate for a certain channel corruption. We trained and
evaluated this system on our created dataset. Results show
that this model needs further training and parameters tun-
ing.

Since this project only develops a baseline for channel
compensation, much more work should be done for future
work, a better neural network architecture for more gen-
eralized dataset containing various types of channel com-
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Figure 9: STOI

pensation, such as convolutional encoder-decoder (CED)
network. Also, device impulse responses are another big
issue involved in the problem.

7. REFERENCES

[1] Antony W. Rix et.al. Perceptual Evaluation of speech
quality (PESQ) - A new Method for Speech Quality As-
sessment of Telephone Networks and Codecs. ITU-T
Recommendation.862, ITU, 2001.

[2] C.H. Taal et.al. An algorithm for intelligibility predic-
tion of time—frequency weighted noisy speech. In [EEE
Transactions on Audio, Speech, and Language Pro-
cessing, pages 2125 — 2136, 2011.

[3] M. Ferras et.al. A large-scale open-source acoustic
simulator for speaker recognition. /IEEE Siganl Pro-
cessing Letters, 23(4):527-531, 2016.

[4] Wikipedia.  Autoencoder.  Free  Encyclopedia,
https://en.wikipedia.org/wiki/Autoencoder, 2018.

[5] Y. Yan and Z. Duan. HWS: Singing voice separation
with neural networks. U of R Press, Wilmot, 2018.



