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Abstract—In this paper, we propose a method for speech
signal enhancement by estimating the clean speech signal through
the use of a speech recognition system. The idea is based
on the observation that noisy/reverberant speech is easier to
comprehend if the listener knows the language and knows what
likely combinations of words are. Therefore, we surmise that if
a computer has an idea of what the clean output of the noisy
speech will likely sound like, it will be able to do a better job
of removing the noise. The overall approach to our method is as
follows: detect the phoneme and pitch of the corrupted speech
signal for each frame, use this information to synthesize a rough
approximation of the clean speech signal, then use this signal to
estimate the noise from the corrupted signal and use spectral
subtraction to get the final clean output.

Index Terms—spectral subtraction, unit selection synthesis,
automatic speech recognition

I. INTRODUCTION

Speech enhancement is used in a wide variety of appli-
cations. The most notable applications include telecommu-
nications, speech recognition, music/sound production. With
the rise of importance of voice assistants that use speech
recognition, it is important for the systems to have clean
speech data in order to improve functionality. Our system of
speech enhancement is a general purpose system. It can be
applied to any desired field, and is meant to improve a wide
range of speech in different contexts.

A. Existing De-Reverberation and De-Noising Methods

Spectral Subtraction is a technique that is used in many
different contexts. Spectral subtraction can be described as
the process of restoring a signals magnitude spectrum through
the subtraction of an estimated noise component [1]. The
noise is estimated in several different ways, and depends on
the context of the implementation. Different noisy signals
will expect different noise, and the noise estimation and
subtraction will need to be updated given the tasks constraints.
An early example of spectral subtraction was used for speech
dereverberation [2]. In this algorithm, they enhance a noisy
speech signal that has been corrupted with reverberations, or
echoes. they use the principles of room acoustics to estimate
the power spectral density (PSD) of echoed voice, and look at
past frames of data to see which phonemes would be echoed
onto the current signal. Once they estimate this noise they can

subtract it from the original signal to result in dereverberated
speech. This implementation of spectral subtraction is very
specific, and is only applied to a very narrow set of contexts.
This application is not meant to remove any noise other than
reverberant noise, and will only perform well when that is
the only noisy component of the signal.

As neural networks have grown in popularity over the last
decade, the trend of using them to solve signal processing
problems has not skipped over speech enhancement. In 2015,
Han et al. [6] proposed a method of using deep neural
networks (DNNs) to learn the mapping of reverberant and
noisy speech to clean speech. In their approach, they used
the short-time Fourier-transform of the current frame of the
input signal and the five frames on either side of it as the
input to their neural network.

In 2016, Xiao et al. [7] also presented a similar approach us-
ing DNNs that also incorporated more control over the process.
Xiao et al. used a restrictive Boltzmann machine to evaluate
the noisy speech signal and initialized the DNN coefficients
using the information learned. They also included the Delta
(first-order time derivative) and Acceleration (second-order
time derivative) of the noisy signal in the cost function of the
DNN in an attempt to improve the continuity of the output.
Both papers noted that their methods resulted in significant
improvement of signal quality, but cited the need to more
fully test the performance on signal conditions that deviate
more and more from the training conditions.

B. Speech Synthesis and Recognition Techniques

Many approaches exist to solving speech synthesis.
The newest and most complicated method is using neural
networks. In this approach, a neural network is trained on
recorded speech data from a user and essentially learns
how that persons voice works. Other methods include:
concatenation synthesis, in which individual recorded sounds
are strung together; formant synthesis, in which a physical
model is used in conjunction with additive synthesis to create
a waveform of speech; articulatory synthesis, which is based
on physical models of the human vocal tract and the way it
produces articulations; and HMM-based synthesis, in which
the frequency spectrum of speech sounds, pitch, and duration



Fig. 1. Block diagram showing the flow of our proposed approach.

are all modeled by Hidden Markov Models. In this method
we will be implementing concatenative synthesis with the
unit being individual phonemes. We chose this method for
ease of implementation, both in terms of complexity and
training time/data.

One of the most widely used general-purpose approach
to automatic speech recognition (ASR) is an HMM based
approach. HMMs work well for ASR as speech signals can
be broken down into piece-wise chunks of information. The
generally accepted approach to HMM-based ASR is to break
down the speech signal into individual frames and compute
the cepstral coefficients of the signal at that frame. Then, the
HMM uses this coefficient vector to assign likelihood values to
the denotation units used in the model (phonemes, diphones,
words, etc.). As the focus of our project is not on ASR, we will
be using an existing ASR toolkit - CMUSphinx - which is an
open-source HMM-based ASR toolkit developed at Carnegie
Mellon University.

II. PROPOSED APPROACH

A. Automatic Speech Recognition

For our implementation, we need ASR on the level of
individual phonemes. While this may initially seem easier than
detection of whole words, it is in fact less accurate. The reason
for this is that when you look on the level of whole words,
you can use context clues to improve the accuracy. When only
looking at the phoneme level, there is more ambiguity on what
a certain sound will be identified as, as many phonemes have
similar sounds. While this may seem like a problem, we do
not believe this will result in a significant decrease in quality
with the end result being de-noising. This is because, while it
will decrease the accuracy of speech synthesis as a whole,
it is likely that misidentified phonemes will have similar
spectral makeups to the actual phonemes. Because our de-
noising algorithm is based on the similarity in spectral makeup
between the speech from the noisy signal and that of our
synthesized speech, the final result should not be significantly
affected.

Through CMUSphinx, we have access to a state of the
art ASR system. More specifically, we will be using Pock-
etSphinx: a version of the Sphinx program that has been
developed for use in embedded systems. The output of this
program is the list of phonemes present in the signal in order
of occurrence, as well as the times at which they start. This,
combined with the pitch vector found from the following step
in the process, will be fed into our concatenative synthesis
algorithm to produce the estimated clean speech signal.

B. Pitch Detection

In our approach, we have elected to use the Yin pitch
detection algorithm. The Yin algorithm is a time-domain based
pitch detection algorithm commonly used for pitch detection
in speech and music. It is implemented by finding the lowest
points in a difference function taken by subtracting a time
shifted version of the signal from itself. A more detailed ex-
planation of the Yin algorithm and the steps for implementing
it can be found in [8].

C. Speech Synthesis

With our pitch and phoneme vectors computed, we can
start the estimated speech signal synthesis. In our project,
we will be using a form of concatenative synthesis known as
unit selection synthesis. In this process, speech is synthesized
by concatenating successive chunks of pre-recorded speech
sounds. In our case, we have recorded samples for each
phoneme in the English language.

1) Phoneme Look-up: In our algorithm, we will be going
through frame by frame of the corrupted signal. The first step
is to determine which phoneme is present in the signal at
that frame. This will be done by checking the current time of
that frame with regards to the start of the signal and looking
up in the phoneme vector which time-stamps that frame falls
between. We then retrieve that phoneme from our recorded
phoneme bank for modification.

2) Pitch Modulation: The next step is to modify the pitch
of the phoneme based on the corresponding pitch from the
pitch vector. As each phoneme in our bank is also denoted
with its frequency, we know the ratio between current and
desired pitch. With this knowledge, we can shift the pitch
of our sample using the phase vocoder process. This involves
resampling the phoneme to achieve the desired change in pitch,
then stretching or shrinking the signal to make up for the
duration change due to resampling.

3) Concatenation: Once we have our sequence of pitch-
shifted phonemes, we concatenate the phonemes to syn-
thesize our estimated clean signal. To do this, we simply
use a weighted overlap-add technique to combine successive
phonemes. We chose to use an overlap-add method of concate-
nation for two reasons: it will produce a smoother sounding
output than just tacking phonemes on one after another, and
it will also provide for smoother transitions between different
pitches and phonemes.



D. Spectral Subtraction

1) Overview: In our implementation of spectral subtraction,
we were able to use the other system components to create a
more accurate noise estimation. Since we have a generated
speech signal, we can use that as an estimate of what the final
clean signal should be. Using the estimated speech signal and
the original speech signal, we can find a very accurate error
between the two signals that corresponds to the continuous
noise signal. By combining this estimate with traditional noise
estimation techniques, we can choose the best noise estimate
that accurately describes all types of noise. With this final
noise signal, we subtract it from the original signal and the
difference is a clean speech signal.

2) Implementation: We start by taking the short-time
Fourier transform of both the original signal x(n) and the
synthesized speech signal y(n) to generate X(m,k) and Y(m,k),
where m is the frequency bin and k is the frame. We use a
hamming window of 512, and a hop size of 128 points. Using
this, we estimate the initial noise PSD N:

N(1, k) = mean(|X(m, k)| − |Y (m, k)|) (1)

With the first estimation, we iterate through every frame in
the original signal, and update the noise estimation for that
frame using a smoothing value

N(m, k) = βN(m− 1, k) + (1− β)P (m, k) (2)

where

P (m, k) = max[0, |X(m, k)| − |Y (m, k)|] (3)

In this equation, P(m,k) represents the single-frame noise
estimate. Finally, the updated noise is subtracted from the
original signal to yield a clean speech signal:

S(m, k) = |X(m, k)| −N(m, k) (4)

If we translate this to a gain function:

S(m, k) = G(m, k)|X(m, k)| (5)

We can account for the SNR between the two signals and
say:

G(m, k) = 1− 1√
(SNR(m, k) + 1)

(6)

where

SNR(m, k) = βSNR(m−1, k)+(1−β)max[0, ˆSNR(m, k)])
(7)

and

ˆSNR(m, k) =
|X(m, k)|
N(m, k)

− 1 (8)

Fig. 2. Spectrogram of clean input speech (left) and synthesized clean speech
(right).

Fig. 3. Results of spectral subtraction in the ideal case of the target signal
being exactly the clean signal.

III. RESULTS

A. Speech Synthesis

An example of the result of our speech synthesis implemen-
tation can be seen in Figure 2. In looking at the synthesized
spectrogram, it can be seen that the fundamental frequencies
and the first few harmonics match the original speech spec-
grogram fairly well, though they largely lack the fine detail
and contour of the original speech. However, in the remainder
of the frequency spectrum, a significant amount of noise and
distortion can be seen in the synthesized spectrogram. In
listening to the time-domain version of the synthesized speech,
this manifests in the speech sounding incredibly robotic, with
the actual speech component sounding barely audible.

B. Spectral Subtraction

To test a baseline version of our spectral subtraction algo-
rithm, we ran it with the noisy signal being a clean speech
signal with white noise added, and the ”synthesized” signal
(the target signal) being the original clean speech. The spectro-
grams in Figure 3 depict the results when run with a smoothing
value beta equal to 0.3. As can be seen, in the noisy signal
the speech is highly obscured, but the spectral subtraction
algorithm successfully identifies and removes a large portion
of the noise.

C. Overall Method

Figure 4 depicts the results of our method when tested a
noisy speech signal created by adding white noise to a clean
speech signal. As is made evident by the spectrogram of the
cleaned signal, the spectral subtraction algorithm currently
picks up the noise and distortion added in the synthesis
phase of the program more than the speech portion of the
spectrogram. While in listening to the synthesized version of
the speech signal you could still hear some semblance of the



Fig. 4. Spectrogram of noisy input signal (left) and cleaned output signal
(right).

speech come through, there is none in the cleaned signal. After
spectral subtraction, the result sounds like a combination of
buzzing and popping noises.

IV. CONCLUSION

As it is right now, the speech synthesis algorithm that this
method implements is not nearly robust enough to generate a
signal that can be used to accurately estimate the noise from
the original noisy input. While in the next section we will
talk about ways to improve this portion of the method, our
opinion is that while the concept poses and interesting solution
to speech enhancement, in practice the combination of speech
synthesis and spectral subtraction to enhance speech signals is
not very practical. In order to synthesize a target signal good
enough to use to accurately estimate the noise from an input
signal, the synthesized speech would likely already be good
enough to use as the output speech already, which would lead
to the spectral subtraction step being redundant. Therefore,
we think time would be better spent in either significantly
improving the speech synthesis section to the point where the
synthesized speech can just be used as the output or increasing
the effectiveness of spectral subtraction alone. One idea we
had for keeping the combine approach somewhat would be to
use the phoneme recognition portion of our speech synthesis
method as a highly detailed voice activity detector to be used
in spectral subtraction.

V. IMPROVEMENTS

While we do think the idea of sticking with this combined
approach is overall not worth the effort it would take, we
nevertheless have come up with methods of improving our
system at least to the point where could generate usable results.
The main way in which our method could be improved is by
increasing the robustness of the concatenative synthesis. In its
current state, our phoneme bank contains only one recorded
sample for each phoneme. However, in real speech a person
can pronounce the same phoneme in slightly different ways
depending on the tone with which they are speaking. The
phoneme selection portion of our method would be greatly
improved if the phoneme bank contained several different
versions of the same phoneme, and the program would select
which version of the phoneme to use in synthesis by choosing
the nearest neighbor to the input speech.

Another change to our implementation of concatenative
synthesis that we think would improve results is to include

more smoothing over transitions between frames. While do-
ing overlap-add between individual frames helps, we believe
that having even more of a transition, especially between
phonemes, would improve the overall contour of the synthe-
sized speech.

REFERENCES

[1] Lebart, K Boucher, J.-M N Denbigh, P. (2001). A new method based
on spectral subtraction for speech dereverberation. Acta Acustica united
with Acustica. 87. 359-366.

[2] Vaseghi S.V. (1996) Spectral Subtraction. In: Advanced Signal Process-
ing and Digital Noise Reduction. Vieweg+Teubner Verlag

[3] Lebart, K Boucher, J.-M N Denbigh, P. (2001). A new method based
on spectral subtraction for speech dereverberation. Acta Acustica united
with Acustica. 87. 359-366.

[4] Neely, Stephen Allen, Jont. (1979). Invertibility of a room impulse
response. The Journal of the Acoustical Society of America. 66. 165-
169. 10.1121/1.383069.

[5] Lebart, K Boucher, J.-M N Denbigh, P. (2001). A new method based
on spectral subtraction for speech dereverberation. Acta Acustica united
with Acustica. 87. 359-366.

[6] Han et al. Learning Spectral Mapping for Speech Dereverberation and
Denoising. IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND
LANGUAGE PROCESSING, VOL. 23, NO. 6, JUNE 2015

[7] Xiao et al. EURASIP Journal on Advances in Signal Processing (2016),
2016:4, DOI 10.1186/s13634-015-0300-4

[8] YIN, a fundamental frequency estimator for speech and music, Alain de
Cheveigne, Ircam-CNRS, 1 place Igor Stravinsky, 75004 Paris, France


