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ABSTRACT

Hearing loss can have profound consequences on individ-
uals, not only restricting their comprehension of speech,
but also their enjoyment of music. Studies have shown that
congruent visual cues can help to ameliorate the difficul-
ties of comprehending a target auditory stream in complex
environments. I will implement a visual system that pro-
vides temporally congruent visual stimuli to instruments in
a polyphonic piece. I propose a simple non-negative ma-
trix factorization (NMF) approach to source separation for
extracting pitch and loudness features. The features will
provide audiovisual coherence to the user interface. The
user will be able to display a visual stimulus that repre-
sents the pitch and loudness of any given instrument in the
piece they are listening to, helping them attend to that in-
strument. [ achieve moderate performance of the source
separation and propose further testing that can demonstrate
the efficacy of this system for aiding people with hearing
loss in music comprehension.

1. INTRODUCTION

Hearing impairments afflict individuals of a wide range of
ages and can range from mild to profound hearing loss [1].
For these individuals, complex sound mixtures are partic-
ularly difficult to comprehend and there has been little ef-
fort to improve sensory aids that may help with polyphonic
music comprehension. I propose a system that exploits
the multisensory connections in the brain to improve poly-
phonic music comprehension with visual stimuli represent-
ing each source in the mixture.

Maddox et al showed that detection of a pitch modu-
lation of a target sound in the presence of a masker was
improved by a disk that changed its radius with the am-
plitude of the target sound [4]. Because the visual stimulus
binds with the matching auditory stimulus, the brain is bet-
ter able to perceive changes not only in the common fea-
ture, but also in orthogonal features. By providing a visual
stimulus for each instrument in a musical piece, the lis-
tener can enhance their perception of any given instrument
by attending to the matching visual stimulus.

By choosing features of the visual and auditory stim-
uli that match pre-existing associations, the binding across
modalities can be strengthened. Brightness of a visual
stimulus has be shown to be strongly associated with both
auditory loudness and pitch [5]. Further associations be-
tween color and pitch exist in synaesthetes [2]. As such,
the brightness and color of each shape will be dictated by

the pitch of the instrument they represent. Loudness and
size are implicitly associated by the propensity of distant
objects being both small and quiet. The loudness of each
instrument will therefore dictate the size of the correspond-
ing shape.

Because the source separation is effectively computed
by the brain, source separation is needed only to improve
the accuracy of feature estimation. I will employ a sim-
ple non-negative matrix factorization [3] to separate instru-
ments in a polyphonic piece, extract pitch and loudness of
each instrument, and construct a visual interface to help
individuals better enjoy polyphonic music.

2. METHODS

All analysis and presentation code was written in Python
2.7. The user interface requires the expyfun package in
order to run (see githubfor code).
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Figure 1. Demonstration of dictionary selection. The av-
erage of a subset of frames captures the frequency domain
shape of non-silent frames.

2.1 Dataset

We will use recordings of notes from the Philharmonia Or-
chestra in order to form dictionaries for the each instrument
in the polyphonic mix. In order to create a full set of instru-
ment notes, we used only the audio file label forte normal
for all available notes. For each note, I took the STFT for
all frames with a Tukey window (0=0.25) and then selected
the dictionary element for each frame by taking the average
of frames that exceeded half of the average energy of the
frame that had the most energy (Figure[I). By only taking
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Figure 2. Dictionaries for flute (top) and violin (bottom).

a subset of frames, I did not include the frames which were
silent. Importantly, because of the importance of audiovi-
sual synchrony, the audio frame length was determined by
the frame rate of the monitor (audio sampling rate divided
by visual sampling rate). Complete dictionaries for two
instruments are shown in Figure 2]

Audio files for analysis were taken from a free library
of open source music, Musopen. Initial testing was per-
formed on “Duet for Flute and Violin in G Major” by Franz
Anton Hoffmeister.

2.2 Source Separation

In order to separate individual instruments, non-negative
matrix factorization was performed using dictionaries con-
structed from notes played by each instrument. I made a
magnitude spectrum of the piece of music using the STFT
parameters as before. The algorithm used is included in
python’s scikit learn package. H was initialized as the con-
catenated dictionaries of all instruments, and only W was
updated with each iteration. Sparseness criteria (with a de-
gree of 5) was implemented such that components from
both instruments would not be activated for each note. The
objective function for optimization is

Z=Y (X-WH),

,J

where Z is minimized by a projected gradient solver. Opti-
mization is completed when the objective function reaches
a value of 1075,

2.3 Pitch Estimation

The pitch of each instrument is estimated as the pitch as the
index of the dictionary at the maximum activation for the
given instrument in the given frame. In order to refine this
estimation, I multiplied the activations by a score informed
instrument-specific cost function to the activations of each
pitch. The cost function was a gamma function with o=
100 that was manually shifted to be centered around the

median ground truth pitch. This should aid in pitch esti-
mation because it is unlikely that the lowest and highest
pitches in the range of the instrument will be played. The
cost function decreases the amplitude of these pitches since
they are more likely to be errors.

Because of the inherent noise in the estimate, I applied
a forward backward 4th order lowpass filter with a cutoff
frequency of 600 Hz. Indices were assigned based on the
range of all instruments (i.e. half step intervals from the
minimum pitch across instruments to the maximum pitch
across instruments).

2.4 Loudness Estimation

Loudness was estimated as
_ 2
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and normalized by
Lnorm =Lx

where o, is the standard deviation of the loudness. This
was then transformed to a log scale for perceptual rele-
vance. I filtered these estimates as above.

2.5 Visual Interface

Visual shapes were equally spaced polygons. The num-
ber of sides of the polygon was different for each instru-
ment, with lower pitched instruments being assigned fewer
sides than higher pitched instruments. Each polygon was
randomly assigned a monochromatic color map ranging
from a dark hue to white (see Matplotlib’s sequential col-
ormaps). The different shapes and hues of the polygon
emphasizes the visual differences between sounds.

The height of the polygons was determined by the abso-
lute pitch of the recording (pitches of both instruments nor-
malized to integer values between O and 99). The bright-
ness of each polygon was determined by the relative pitch


https://musopen.org
https://scikit-learn.org/stable/

Figure 3. Visual interface with two simulated instruments
playing.

of the instrument (each instrument’s dynamic range nor-
malized to integer values between 0 and 99). Size of the
polygons is proportional to the loudness in dB. The size of
the polygon is set to zero when it is below a threshold. The
history of each instruments pitch and loudness is logged
by identical shapes of decreased size and opacity that trail
off to give the appearance that the canvas is traveling to the
left. See Figure[3]

Visual representations of any instrument can be turned
on or off independently by clicking near the shape. If the
visual for a given instrument has been turned off, only a
small white version of the shape with a 0.1 degree radius is
shown to give an indication of where to click to turn it back
on. The small “off” shape does not have dynamic shape,
color, or position.

2.6 Testing

Testing data was constructed by taking the notes used to
generate the dictionaries and stringing them together in a
rudimentary melody. One melody was composed in C Ma-
jor and a second was composed with random pitches. I
then calculated the normalized RMS of each frame with
the isolated audio for one instrument to act as a ground
truth. The ground truth pitch was based on the labels of
each audio clip.

3. RESULTS

The feature extraction was not particularly successful (see
Figure[d) for the piece that was initialized with a key. How-
ever, the piece without a key (and therefore fewer harmonic
relationships was) had limited accuracy as well (see Figure
B). In the case of the C Major piece, the pitch cost func-
tion is different for each instrument, reducing the errors
that result in pitches overlapping. In addition to increasing
pitch estimation accuracy, the pitches are more separated.
This helps to improve visual separation of the two auditory
streams.

In the case where there is no key, the cost function for
pitch refinement hinders rather than helps the pitch estima-
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Figure 4. Results of the pitch and RMS extraction for C
Major piece and cost function applied to pitch estimation.
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Figure 5. Results of the pitch and RMS extraction for
piece without a key and cost function applied to pitch esti-
mation.

tion. Because the pitches of each instrument are chosen
randomly and their ranges overlap entirely, the cost func-
tion for both instruments is the same and cannot aid in the
separating the two instruments.

Observations suggest that the performance of the visual
system with either of these estimates are poor and not sig-
nificantly affected by the application of the cost function.
When using the ground truth RMS and pitch, the visual
system performs well and gives the impression of being
helpful in auditory comprehension.

See the supplemental video for a demonstration of the

Accuracy RMS | Pitch
Key (with cost) 33% | 28%
(without cost) - 18%
No Key (with cost) | 31% | 13%
(without cost) - 23%

Table 1. Accuracy of the RMS and pitch estimates from
NMEF relative to the ground truth. Tolerances of RMS and
pitch accuracy were 0.1 and 3 respectively.



visual system using the ground truth pitch and RMS values.

4. DISCUSSION

Using NMF to separate sources necessitates that this be
an offline program. Before separating the sources, prior
knowledge of the instruments’ identities is required. Fur-
ther processing time is required to a converge on a solution.
The system may be modified to allow for multitrack MIDI
files to alievate the burden on any audio processing algo-
rithms since these contain the required pitch and loudness
information for each instrument.

Failure of feature extraction can be attributed to the ba-
sic nature of the NMF implementation. In order to correct
this, further sparsity and temporal continuity constraints
can be added. It is also possible that other source separa-
tion methods would yield more accurate results in estimat-
ing the RMS. Additionally, multipitch streaming methods
may be employed. It should be noted that these techniques
may be more computationally expensive and not provide
profound benefits.

The testing is likely an overestimate of performance
since the testing data was derived directly from the NMF
dictionaries whereas real music would not. I observed a
decrease in performance when using a real piece of mu-
sic relative to the testing audio. This is solely a failing of
the audio processing, as the observed performance of the
visual interface is excellent when using the ground truth
values. It should be noted that this evidence is anecdotal
and needs to be formalized.

In order to truly assess the value of this system, it is im-
portant to test the benefits to human perception, rather than
just the performance of the feature extraction. This could
be achieved by asking normal hearing listeners to perform
a melody matching task. In each trial, the listener would
hear a clip of a polyphonic piece of music and be cued to
attend to a particular instrument. Then, they would hear
two melodies and be asked to identify which was played
by the cued instrument. We would test three conditions:
no visual system, the proposed system with all visuals on,
and the proposed system with only the attended visual on.
Validation of the proposed system would be achieved if a
significant improvement was measured between task per-
formance in the no visual and attended visual conditions.
The all visual condition is may or may not offer a benefit
and is therefore important to test in order to instruct users
on proper use. While human testing was beyond of the
scope of this work, it is necessary for evaluating the sys-
tem.

In addition to proper testing, the system could benefit
from more sophisticated audio processing techniques and
visual imagery. For example, timbral features could be ex-
tracted and represented by the hue of the visual stimuli,
or the shape of the visual stimuli could be mapped onto
another auditory feature. Ultimately, the goal will be to
maximize audiovisual coherence.

5. CONCLUSION

With growing insights into our reliance on multisensory
information to perceive our environment, this project con-
tributes to a body of work that takes technology into the
multisensory realm. As a field, we should continue to ex-
ploit the power of multimodal information.
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