
  

 

FACTORS FOR IMPROVING CLASSIFICATION OF CREAKY 

VOICE 

ABSTRACT 

Very few algorithms exist to identify vocal fry, or voice 

creak, in speech. Despite this, creaky voice (CV) is an 

important paralinguistic feature across languages and its 

detection would benefit many systems. Existing algo-

rithms are reliant on periodicity of the pulses of CV de-

spite the fact that CV is often aperiodic. Newer algo-

rithms propose alternate measures, but these are generally 

limited in the environments where they are effective. This 

paper investigates possible heuristics for CV, several tak-

en from these newer methods and some new ones, and 

integrates the most effective into a support vector ma-

chine. While the support vector machine does not render 

very good results, the results offer opportunity for further 

study.  

1. INTRODUCTION 

“Creaky voice” or “CV” is a descriptor for an unusual 

vocal effect which is popularly known for its use by the 

Kardashians and other female users of so-called “vapid” 

speech. This type of phonation, which sounds low and 

croak-like, is also referred to as “vocal fry”, “laryngeal-

ization”, “glottalization”, and “the pulse register”. Its 

unique sound is caused by compressed, slack vocal folds 

which result in extra glottal pulses which may be of a 

very large period or irregular [1].  

 CV occurs in far more registers than “vapid 

speech”. In English, it indicates prosodic and emotional 

information. In many Native North American languages, 

voice creates phoneme-level contrasts. In tonal lan-

guages, certain tones may be indicated by the presence of 

creaky voice, such as the third tone in Mandarin. This is 

because CV sometimes is used as a stand-in for actually 

lowering ones voice pitch, because CV sounds very low. 

Relatedly, CV creates problems for pitch estimation algo-

rithms. Interest in detecting CV lies in its value to speech 

recognition, emotion detection, intonation categorization, 

improved pitch detection, and other systems.  

 In the face of these interests, detecting CV is a 

nontrivial problem. In the literature, CV is a term that en-

compasses several more specific types of vocal glottaliza-

tion, all of which have slightly variant acoustic properties 

[2]. CV is also particularly difficult to detect in male 

speech and speech with a low fundamental frequency, or 

f0, without generating a large number of false positives. 

Finally, CV is not a homogenous effect. Even within con-

sistently presenting CV, there are two separately occur-

ring features: high-energy pulses and low-energy sup-

pressed areas between. Algorithms must accommodate 

both of these to detect whole segments of voice creak.  

 For a long time, the detection of creaky voice 

relied on autocorrelation to detect low-frequency perio-

dicity which might be the successive glottal pulses result-

ing from CV [4]. The flaw of this method is that it is far 

more likely to detect CV where glottal pulses fall periodi-

cally or close to that.  While this is true of some CV, 

many CV pulses are irregular.  

 

 
Figure 1. An example of a creaky voiced vowel in a fe-

male speaker, including irregular pulses and amplitude 

  

 Improved algorithms exist, although these all 

have some limitations in the types of creak detected as 

well as the environments in which they are detectable.   

 One algorithm classifies segments based on 

measures of aperiodicity, periodicity, and “very short 

term” power peak detection [3]. This algorithm was de-

signed for a specific subset of CV and may struggle with 

the others. It also used data sets that were mostly female 

speakers and scores more poorly on male speakers than 

its reported overall accuracy [1].  

 Another algorithm applies a resonator to speech 

to detect glottal pulses. This algorithm claims accuracy 

but only detects pulses, not entire segments of CV [1].  

 The only algorithm that takes advantage of the 

spectral domain is Martin which uses sudden changes in 

the number of harmonics. However, this algorithm cannot 

detect CV after silences and unvoiced segments, which is 

an extremely large number of environments in which to 

fail [4]. 

 The most state of the art and well-used heuristic 

is Ishis’s measure, the ratio between the first and second 

harmonics [5]. However, this algorithm was not well-

tested on male speech and presents itself as a primary, but 

not exclusive, measure  

 The goal of the experiment in this paper was to 

quantify another measure which might make these some-

what effective algorithms more robust to different envi-

ronments and speakers. Particularly, I wanted to investi-

gate measures that might be agnostic to the average f0 
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range of the speaker. I investigate sound levels and a var-

iation on spectral flux as parameters with mixed results.  

2. DATA AND ANNOTATIONS 

I performed my experiment with data that I collected my-

self. I did this for several reasons. Firstly, many preexist-

ing datasets were behind a paywall. Secondly, many of 

these datasets only included 1-3 speakers which were al-

most all female. Finally, these datasets were not pre-

annotated for creaky voice segments, and I would have 

been annotating myself regardless. I decided that I could 

build a more useful dataset than existed previously.  

 I recorded about an hour and a half of speech 

from 8 different speakers, 4 male and 4 female, using a 

ZOOM recorder with two microphones. I interviewed 

speakers late at night because tired speakers are more 

likely to produce CV than average speakers. I then anno-

tated the data to use as training and test data.  

 The annotation schema I used was very simple. 

In the software Praat, I used audio as well as visual cues 

from the wave form and labeled segments of creaky voice 

as 1 and modal (normal) voice as 0 [6]. Each segment 

was an average of 0.9 seconds in length. Modal segments 

could include anything from silence to vowels to un-

voiced segments. The split was about 60% modal and 

40% creak.  

 These annotations were fed through a Python 

script with wave files. The wave files were then split into 

separate files based on the annotations for use as training 

data and test data.  

 

 
Figure 2. A creaky spectrum: Dark indicates more energy 

3. MEASURES OF CREAK 

3.1 Score 

Score was implemented with the intent to imitate the way 

humans identify creak through the spectrum by positively 

scoring items with large fluctuations in the power per 

spectral frame. CV undulates between very energized 

pieces (the glottal pulse) and very damped sections. The 

goal of score is to capture this factor. This method felt 

intuitive and is a very simple measure.  

 The score has two components: change in spec-

tral power and change in harmonic composition. Good 

candidates for creak should have a high change in spec-

tral power, indicative of the irregular amplitude that ac-

companies CV as well as the way that the spectrum 

switches between high energy glottal pulses and low en-

ergy intermediary sections.  

Good candidates will preferably also have a low 

change in harmonic composition. This avoids erroneously 

marking pieces of speech that change spectral power as 

creak when they are caused by something else, such as 

changes in the phoneme.  

 I measure the difference in spectral power by 

simply summing each window of the spectrogram across 

all frequencies. This measure was best when I put an up-

per bound on the frequencies included. An upper bound 

at 3500 Hz excluded high frequency background noise, as 

well as some of the high frequency noise caused by aspi-

rated plosives and stridents such as /s/. The upper fre-

quency noise caused by these phonemes is very high en-

ergy and highly variant and may appear as false positives 

for creak because the noise varies highly from frame to 

frame. This does not cut off all of this noise, but stops it 

from having a disproportionate effect on score measure-

ments.   

ΔPower = ∑St -∑St-1 

 My measure of change in harmonic structure is 

not based on measuring harmonics through autocorrela-

tion or other more sophisticated measures. Not all of my 

training data has harmonic structure, and attempting to 

measure multiple autocorrelation peaks in segments 

without a fundamental frequency led to many errors. In-

stead, I approached it as more of a frequency profile than 

a harmonic one.  

I found the highest energy k frequencies in each 

window of the spectrum. The index of the frequency bins 

of these are then stored and sorted. The difference be-

tween these sorted lists becomes the change in frequen-

cy/harmonics. The k can vary, although I found best re-

sults around 3-7 points. While this measurement is not 

equivalent to real measures of the harmonic structure, it 

has practical value. For voiced segments, which are the 

segments we are focused on, these maximum energy fre-

quencies should be located around the formants of the 

phoneme.  

ΔFrequency = ∑k(ik(t)-ik(t-1)) 

The score is a measure of the ratio of change in 

spectral power and change in harmonic structure. It is 

helpful to apply a weight, α, to the change in harmonic 

structure. Weighting it higher produces improved accura-

cy overall. We want to lower this weight, we only need it 

to have a small effect. My optimal α was 0.25.  

score = ΔPower/αΔFrequency 

 This measure functioned best with a very high 

time resolution. I used a Gaussian window (the same as 

the default on my annotation software) of length 128. 

Raising the size of this window means that creak may not 



  

 

be captured as glottal pulses may lie entirely within win-

dows and their high power will appear less significant 

buffered by surrounding lower power glottal suppression.  

3.2 SNR and RMS 

The literature leads us to expect a lower signal-noise-ratio 

for almost every type of voice creak [2], because of irreg-

ular f0 increasing the amount of noise, and glottal pres-

sure stifling some of the sound between pulses. However, 

SNR returned no statistically significant or even interest-

ing looking results no matter what parameters and noise 

were used for its calculation. While I do believe it is pos-

sible to use this measure, a quality measurement of SNR 

customized to creak was outside of the scope and limited 

timeline of this project.  

 While I intended to use RMS to detect silences 

that should not be tested or trained on, RMS became my 

most useful measure. RMS was low for any voiceless 

segments of speech, as expected, but rather than serving 

to differentiate between voiced segments and voiceless 

segments (segments with no f0, where the vocal chords 

do not vibrate), RMS was similarly low between voice-

less segments and creaky voiced segments. Because 

creaky segments must be voiced – you cannot produce 

sounds with slack vocal folds if you are not using your 

vocal folds – this is a very good heuristic to tell the dif-

ference between creak and modal voiced segments. This 

is particularly intriguing because this method is agnostic 

to the distance between glottal pulses, theoretically neu-

tralizing the difficulties with male and low f0 speech.  

 

 

Figure 3. A graph of squared RMS across a short utter-

ance, labelled for phonemes and phonation.  

4. LEARNING 

I used RMS and my own score parameter to train a sim-

ple linear support vector machine to classify creaky and 

noncreaky segments. The machine was trained on 50,000 

examples. This is within the recommended range for the 

SVM that I used [7]. The input was ordered pairs of 

<score, RMS> for each spectral frame. Labels were 1 or 0 

for creaky or modal generalized from my earlier annota-

tions.  

 The training data was 30% creak and 70% modal 

voice. This imbalance is difficult to avoid because modal 

voice is much more common.  

 This SVM used an adaptive learning rate for fastest 

convergence. It used a shrinking heuristic, I trained and 

tested it several times on different samples of my data to 

make sure that my results were consistent, especially giv-

en my small amount of data. Another positive effect of 

my high time resolution in my spectrogram was that it 

stretched my data farther, enabling a more accurate model 

and lessening the chance of overfitting.  

5. RESULTS AND DISCUSSION  

My results had very low accuracy, and I will discuss the 

reasons for this in the rest of the paper.  

 The predicted labels on my test data, which had a 

similar imbalance to my training data, were an average of 

56% accurate. When accounting for the balance of the 

data, the score was 54%, meaning we only managed to do 

about 4% better than random guessing would have been.  

 This was a discouraging result which caused me to in-

vestigate the possibility of overfitting. I tested my im-

plementation on my training data, and while the results 

were somewhat higher – 57.3% - they were by no means 

good.  

 Of the incorrect predictions, 96% were false negatives 

for CV. This means my model is significantly skewed 

towards modal voice, which makes sense and is probably 

at least partially a result of my data skew.  

 In the following section, I discuss these negative re-

sults, the challenges that caused them, and what can be 

learned from this flawed implementation.  

  

6. CHALLENGES 

The main challenge in using a SVM for this problem is 

the noisiness of the data. This problem is two-fold, firstly 

because the data may be noisy in the same way any data 

might be, but secondly because of the extreme diversity 

of the measurements even within the same annotated 

segment. Figure 2 shows the variation that can occur in 

measurements like this. There are many peaks and valleys 

even in the relatively sound RMS measurement. Peaks 

and valleys in both score and RMS measurements are 

considered equally representative while training an SVM.  

 Even if trained to recognize high scores and low RMS 

as a good measure of creak, this will still lead to a great 

many false negatives because only a few frames per an-

notated segment may really demonstrate those qualities.  

 While overall, creaky segments have a higher score 

than non-creaky segments, there are many points in be-

tween these where the score is quite low because between 

glottal pulses, the spectral power may be decently con-

Modal 

voiced 

Modal 

voiceless 

Creaky 

voiced 



  

 

sistent. It would be preferable to smooth these curves in a 

way that ignores valleys between very large peaks, but 

too much smoothing may ignore the fine-grained details 

necessary to detect CV in the first place.  

 I believe that a better use for the score parameter 

would be to measure for larger segments the density of 

peaks in the score. High density would indicate creaky 

voice. For this purpose, the change in frequency would 

not need to be included in the measurement.  

 Another difficulty is the relative nature of RMS. RMS 

measurements vary significantly between recordings and 

even within recordings. While I tried to normalize vol-

ume based on the longer recordings which sourced my 

shorter training and testing data, there is not a single 

number that divides modal and creaky RMS measure-

ments. Some modal voiced segments, even within a sin-

gle recording, may be quieter or not as well-voiced as 

others. Furthermore, normalizing a segment which con-

tains only creaky voice may artificially raise its RMS to 

modal levels.  

 Finally, due to variant speaker pitch range and vocal 

habits, the optimal window size for any type of glottal 

pulse analysis is heavily variant. For modal segments, 

some of my speakers’ normal glottal pulses happen at the 

same rate as creaky pulses for my speakers with a higher 

f0. Tailoring my window size to the higher-pitched 

speakers gave false positives on lower pitched speakers 

on spectral measurements (although not RMS). Tailoring 

my window size to lower pitched speakers resulted in ig-

noring higher pitched speakers creaky voice. On top of 

this, many of my male speakers used a lot of pressed or 

tensed voice, a similar effect to creaky voice that is not 

low-pitched or irregular, but still causes unusually strong 

glottal pulses with suppression in between. This increases 

the problem of false positives. A better system could train 

individually on a single speaker or recording environ-

ment, or would first take the average pitch range of the 

speaker into account.  

7. CONCLUSION 

While the SVM was not particularly successful, we did 

discover the usefulness of RMS as a measure to differen-

tiate between CV and modal voiced segments. This was 

not exceptionally helpful for this project, because my data 

was not annotated for phoneme. However, many speech 

data sets are annotated by phoneme. In future experi-

ments, given this information, we can attempt to improve 

popular existing methods’ accuracy on male voices by 

testing only segments labelled as voiced phonemes and 

then testing the RMS in addition to other heuristics, such 

as Ishi’s H1-H2. This is an interesting avenue for further 

study.  

 I do not think we should entirely throw out the idea of 

a trained classifier or SVM. Algorithms designed for this 

purpose continually show drastically better performance 

on the datasets which they were developed for [1], which 

is not a surprising result. One reason that this is such a 

significant effect is that optimal window size and spec-

trogram resolution, along with other parameters for wave-

based analysis, vary based on individual speaker’s voice 

and pitch range. A partially trained agent which can be 

completely trained on the beginning of a long recording 

and annotate what follows afterwards would in and of it-

self be helpful within intonation-detection and similar al-

gorithms, solving some of the most salient problems for 

the application of CV detection.  

 I would love to try many techniques, including send-

ing the whole spectrum to a classifier, separately training 

on men and women, and finding more sophisticated 

measures for score and noise levels. Unfortunately, as the 

semester ends, this project cannot include those further 

investigations which I look forward to pursuing on my 

own.  
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