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Music is not only meant for entertainment, but has the power to
deliver different emotions to people. From the time machine
learning and deep learning came under the spotlight, researchers
have tried to use these techniques to retrieve a variety of
information from music — genre, instrumentation and even
emotion. In this paper, we propose a Convolutional Auto-
encoder!!) that can extract arousal and valence values that
represent the dynamics of emotions of a given song. The results
of the proposed architecture are compared with a baseline model.

Emotion and Music

* Two views on emotion and music

 Emotivists: Music induces real emotional responses in the
listener.

* Cognitivists: Music simply expresses an emotion.

* Two representations of emotion

* (Categorical psychometrics: Utilize some set of emotional
adjectives (tags) based on their relevance to given music. Ex.
Hevner’s 8 groups of emotions with 66 adjectives.
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* Dimensional psychometrics: Mood is scaled and measured
by simple multidimensional metrics. Ex. Russell and Thayer’s
two Valence-Arousal space[2].

* Arousal: Intensity, ranging high-to-low.

* Valence: An appraisal of polarity, ranging positive-to-negative.
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Proposed Method

Yoon mo Yang

Emotion in Music Database!3!: contains 744 songs and 619
of them are for development and 125 of them are for
evaluation.

Each song has 45 seconds. From 15 seconds, the continuous
annotations of arousal and valence values are annotated by
300 crowdworkers on Amazon Mechanical Turk.

Annotation interface: used a mouse to annotate arousal and
valence continuously.

The sampling rate of the annotations is 2 Hz so each song
has a pair of 60 annotations for 30 seconds.

Flatten
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The dataset was pre-processed to obtain faster training

process.
Mel-spectra as input features.

Extracted mel-band features from 500ms with 60ms of
window length and 30ms of hop size (= 50% overlap) by
using the librosa python library.

Took average over 17 time frames to get 60 time frames.
Pytorch was utilized to implement the proposed model.
Each convolutional layer is followed by a Leaky RelLU
activation function.

The output of the last convolutional layer gets downsampled
by a max pooling layer which is followed by a tanh activation
function.

Dropout is used for each convolutional layer with 75% to
avoid overfitting.

Adam optimizer is utilized with learning rate 0.0001.

Kernel size, stride, padding
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Results on 610 songs (training set) and 9 songs (validation
set).
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Results on test set: the baseline model (two
convolutional layers and three fully-connected layers).

I R

MSE 0.1088 0.0908

RMSE 0.330 0.301

Results on test set: the proposed model.
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MSE 0.0965 0.0606

RMSE

Conclusion

0.310 0.246

Proposed method outperforms our baseline model on the
test set on both arousal and valance values.

However, our method is sensitive to hyperparameters and
easily gets overfitted.

RNN layer is not yet explored.

Data augmentation (ex. Adding Gaussian noise) is necessary
to have robustness.
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