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Abstract

e Automatic Music Transcription (AMT) approaches are
often tailored towards solo piano recordings
o Guitar has additional expressive dimensions
o There Is less data for solo guitar recordings
e Recent dataset (GuitarSet [2]) has created new
opportunities for data-driven approaches
e Model-based approach to guitar-specific AMT using
Convolutional Sparse Coding (CSC)
o Proof of concept for solo piano recordings [1]
o Dictionary generated from real occurences of each
note (model)
o Activations provide latent representation for
Inference
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e Algorithmically recover the information sufficient to
form a symbolic representation of the music inherent
INn an audio signal
o Several types of symbolic representation, e.g.

tablature or piano-roll, sheet music, MIDI, etc.
e Plenty of applications
o Real-time instructional scenarios which listen and
provide feedback for a human player

o Mid-level music representations for database
querying

o Improvement of methods for other music analysis
problems

e Represent time-domain signal as the sum of
dictionary elements activated across time

Dictionary Activations

Dictionary Generation

1. Isolate a training split, i.e. 5 out of 6 guitarists
2. Acquire waveform of all notes, grouping by string/fret
3. Enforce minimum number of elements per string/fret
a. Pitch-shift elements from previous if necessary
4. Reduce the number of elements per string/fret to a
fixed amount
a. Ilteratively find element most dissimilar to all
elements in current group for inclusion
I. Currently using summed dot-products

Examples of F#2 on Low E String
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GuitarSet [2]

Estimating Activations

e Alternating Direction Method of Multipliers (ADMM)
algorithm for Convolutional Basis Pursuit Denoising
(CBPDN) problem

e Squared reconstruction error, Sparsity, and Lateral
Inhibition terms
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e Recordings of solo guitar pieces (~30 seconds)
o Mono-channel microphone
o Hexaphonic pickup
e About three hours of audio from six guitarists
e Different styles, keys, genres, comp/solo, etc.
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Evaluation - Results - Future Work

Inference

e Grouping is maintained at the activation level
o Strongest activation by string gives pitch, onset, and
duration for transcription
o Activations for a whole string
can reconstruct its
original audio
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e Precision, recall, F1 score

o Frame-wise predictions (Multiple FO estimation)
o Note-wise predictions (AMT)
m Correct onset and pitch
m Above, and correct offset
Signal-to-Distortion Ratio (SDR)
Need to implement in a memory efficient way
Take closer look at the implementation specifics of [2]
Generate dictionary iteratively from estimated guitar
model parameters
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