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ABSTRACT 

Accent classification is an important problem in the realm         
of speech/speaker recognition. The number of acoustics       
elements that affect the perception of accent make        
machine learning an ideal solution to this problem. We         
propose a Bidirectional LSTM network for classification       
of accented English. We performed unsupervised learning       
on the output of the network to visualize how different          
accents are associated with each other.  

1. INTRODUCTION 

Along with gender and age, accent is one of the main           
differentiators between speakers. Speech recognition     
algorithms that have been trained to function on only one          
type of accent may be inept when presented with another.          
Therefore accent classification can aid these algorithms       
by providing an initial analysis of what a given speaker          
may sound like [9]. 

A number of systems have been proposed that focus         
on multi-accented speech recognition [8][12][13].     
Vergyri et. al. used Gaussian Mixture Models to classify         
training data for speech recognition based on       
country-of-origin. Once classified, the data was run       
through accent-adapted models dependent on the accent       
of each speaker. Improvements are seen in the word error          
rate (WER) for speech in each accent when using this          
model [12]. This implies that initial classification of        
accent is a promising direction in the development of         
successful speech recognition algorithms.  

2. BACKGROUND 

The accent classification problem involves identification      
of a pattern of speech within spoken audio data that is           
indicative of a certain region of the world. Each language          
can have innumerable accents associated with it       
dependent on whether it is a speaker’s first language or if           
it was learned later in life. Each of these accents may           
have features that resemble the first language of the         
speaker, while also taking on patterns that are more         
related to the process of learning as a second language.  

Amongst native speakers there is also a large        
amount of variation. Country-of-origin, as well as       
region-of-origin may have a large effect on pronunciation        
and tempo of spoken word in the same language. For          
example, speakers of English from the south of the         

United States have a vastly different accent from those in          
more northern regions, and both share differences with        
English speakers in the United Kingdom.  

Differences between accents are comprised of a       
number of components. Non-native speakers of a       
language may display defective articulation of certain       
phonemes, which can be seen as additions, distortions,        
omissions or substitutions [1]. These phoneme based       
modifications are visible in the spectral characteristics of        
speech waveforms over instantaneous or short time       
periods.  

Prosodic elements of speech also show variation       
between accents. The meter of one’s speech as well as          
intonation and pitch contour patterns all have an effect on          
perceived accent. Timing of pauses can be especially        
useful in determining the origin of a speaker [1].  

While this mix of spectral and prosodic elements        
can be good indicators for accent, they can be difficult to           
pinpoint. Therefore, for over two decades now       
researchers have been studying methods for accent       
classification outside of acoustic feature detection.  

Hidden Markov Model (HMM) based approaches      
were one of the earliest attempts at accent classification         
in a probabilistic manner [1] [4] [5] [6]. L. Arslan and J.            
Hansen tested three models with different levels of a         
priori knowledge and found that a system in which HMM          
accent recognizers are trained on a predefined small        
vocabulary could perform at approximately 93%      
accuracy in accent classification given four accent       
classes. While this is a promising performance, the        
system only functions on the highly controlled set of         
words selected for training. Additionally, their evaluation       
of HMM approaches with less a priori information        
showed significantly worse performance, ranging from      
60-70% accuracy [1].  

More recently researchers have been applying      
artificial neural networks to accent classification as they        
can be powerful tools for training large sets of speech          
data [2] [7]. Y. Jiao et. al. implemented a fused Deep           
Neural Network (DNN) and Recurrent Neural Network       
(RNN) system that trains on long-term and short-term        
features respectively [2]. By factoring in both prosodic        
and articulative components of speech, this system saw        
increased performance in accent classification over      
systems that only considered one or the other. Overall         
accuracy of the system was around 52.5% for speech data          
only labeled by accent. Improvement is still possible in         



 
 
this realm but the use of long short-term memory (LSTM)          
networks for accent classification is promising. 

We decided to build upon some of the proposed         
accent classification networks to implement our own. The        
rest of this paper is organized into sections describing this          
implementation. Section three covers the methodology of       
our system. Section four explains how we evaluated the         
performance of our network. Section five presents the        
results of running our model. Finally section 6 concludes         
our paper.  
 

Accent Train Valid Test 

US 24993 149637 630 

England 5287 58607 154 

Australia 4556 23966 290 

Canada 3153 17586 58 

NZ 585 6070 11 

African 442 4089 25 

Scotland 375 4382 12 

Philippines 322 1330 10 

Singapore 294 702 4 

Ireland 257 3424 23 

Malaysia 114 843 11 

Other 113 10341 33 

Hong Kong 20 1181 11 

Wales 3.0 1128 4 

Bermuda 0 449 10 

South Atlantic 0 212 3 

 
Table 1: Dataset distribution by accent 

3. METHODS 

3.1 Dataset 
 
We train our model with the Mozilla Common Voice         
Dataset. The training dataset contains over 44000 spoken        
english sentences. These sentences contain accent labels       
as well. Each sentences contain ~20 second long        
speeches. These sentences are spoken by people from a         
mix of 17 different origins, distributed as shown in Table          
1. These origins are used as the accent labels for speeches           
[3]. We apply a 201 dimensional short term Fourier         
transformation (STFT) with block-size of 400 and       
hop-size of 200 on each of the speech sound files to           
convert them into spectrograms. We use the frequency        
level dimensions as the features for training our model.  
 
3.2 Network Architecture 
 
In our network shown in Figure 1 the model architecture          
is comprised of four Bidirectional LSTM layers. Each        
Bidirectional LSTM cell takes in 201 dimensions of        
inputs from each segment of the spectrogram and passes a          
100 hidden state of 100 dimensions to the next cell. The           
final hidden layer, which is a concatenation of the hidden          
state from both directions, from the Bidirectional LSTM        
cell then passes through a fully connected network.        
Softmax function is applied to this layer giving        
probability for each of the 17 categories of accent labels. 

Bidirectional LSTM can accept the information only       
in the forward direction, due to the temporality of the          
sequential data [11]. We employ BiLSTM cells in our         
model to let the network input both past and future          
information into current computation, thus learn      
important features from the past and future information,        
based on the neighborhood of the current state, rather         
than the specific ordering of the information in the         
sequence. 

Our modified model, as shown in Figure 2, further         
employs attention mechanisms to learn the mappings       
between a subset of hidden states, such that it maximizes          
the use of more relevant information from past hidden         
states. LSTM layers create a context of the past         
information via hidden states. This is achieved by        
generating weights for each segment hidden state outputs        
from the BiLSTM cells via a separate single layered fully          
connected mini networks. As shown in Equation (1), this         
allows the network to build a context from past         
information selectively, maximizing the flow of more       
relevant information for the prediction at the current        
timestep. We use a soft attention mechanism that learns a          
weight vector using softmax function, and   ε (0, ] w 1     
computes the selective context vector as a weighted sum         
over all hidden variables: [10] 
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3.3 Clustering 
 
We also attempt to understand the similarity of each of          
the accent in an unsupervised fashion. From the LSTM         
model without attention we collect the tensors of the last          
layer of the fully connected network for each of the          
speeches after the model has been fully trained. K-means         
clustering has been applied to this by treating the tensors          
as data. K value of 17 has been used as our dataset            
contains 17 distinct accent. We then map the accents for          
each of the clusters to understand the proportion of accent          
labels in each of the clusters. This has been visualized in           
the feature space to understand and analyze the similarity         
in each of the accents.  

For ease of visualization, we visualize the data        
through a dimensionality reduction method called TSNE       
plot. This essentially squashes all the 400 feature        
dimensions into two dimensions. The true labels for each         
data are shown via color codes of the data points. The           
different colored contours in the background represent the        
clustered labels. We also label the TSNE plot with the          
proportion of true labels in each cluster. 

4. EVALUATION 

We compute Cross Entropy Loss for 17 classes, using a          
softmax classifier on negative log likelihoods of the last         
activation layer.  

       (2)rossEntropyLoss  . log (p )C =  −  ∑
M=17

c=1
yo,c o,c  

where c is the label, o is the binary indicator I (1,0) and             
M is the total number of classes (17 accents). 

After every epoch the model is evaluated on the         
validation set which contains over 3000 voice clips. We         
were able to run our model completely through the         
training set for 30 epochs due to time and computing          
constraints. We use the average loss on the validation set          
to select the best model that gives the lowest validation          
loss. This model is then tested on the test set which           
contains over 2000 speeches in the similar format. The         
accuracy is computed on the basis of what proportion of          
the accent labels the model was able to predict right. 

 

 LSTM LSTM + Attention 

Train Accuracy 57% 60% 

Validation 
Accuracy 55% 55% 

Test Accuracy 52% 54% 

 
Table 2: Model Accuracies 

5. RESULTS AND DISCUSSIONS 

Upon evaluating our results on the trained model, the test 
accuracy percentage and clustering analysis, a number of 
observations and proposals can be made.  



 
 

While our trained model produces a test accuracy of 54          
%, beating a pure-chance baseline, it is yet to yield          
reliable results on the accent classification task.  

Ultimately our system had trouble with accurately       
classifying accents. As table 2 shows, neither model runs         
with a test accuracy over 54%. Clustering the output of          
the LSTM model, as displayed in Figure 4, led to one           
large cluster with smaller clusters at the top of the graph           
that still display inaccuracies. A comparative analysis of        
the two t-SNE clusters may indicate a source of problem          
due to the severe imbalance of distribution in the dataset,          
where the majority of the input samples come from         
certain accents, biasing the network to falsely classify        
towards more frequently appearing accents. This most       
likely led our model to predict the class with most data all            
the time.  

Another source of error can be attributed to the         
audio quality of the dataset. Our empirical studies have         
shown that many samples were fairly noisy, which might         
make it difficult for the network to properly learn good          
high-level representations of given accent. The level of        
variability in the quality of audio samples could also         
account for the lack of performance. In our training and          
inference, we used magnitude response from the STFT of         
the audio signal. This may not be the best representation          
of the raw input to learn features from, using more salient           
input representations such as the Mel-Frequency Cepstral       
Coefficients could yield better accuracy results.  

The addition of the attention layer to the LSTM         
network appeared to only slightly improve the accuracy        

of the model. Whether this level of improvement would         
increase on an overall better-functioning network is       
something that could be studied in the future. 

 

6. CONCLUSION 

The fact that our best model performs with a 54%          
test accuracy, beating the pure-chance baseline, implies       
promising subsequent works. An interesting future      
direction of research would be to employ generative        
training schemes to learn a variational approximate       
distribution of each accent with additional conditioning       
on the gender and the word-embeddings. Integrating       
language and pronunciation models can allow the       
network to better learn fine-grain features from the        
building block units (graphemes, phonemes etc.) chosen       
to represent lower-level input. Generative training can       
provide a prior and a regularizer for network to limits its           
parameter space search to more meaningful subspaces. A        
discriminative training following this generative     
modelling may yield more accurate predictions for having        
a better understanding of the data distribution of the         
different accents. 
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