
GUITAR TUNING IDENTIFICATION

Varun Khatri1 Lukas Dillingham2

Department of Electrical and Computer Engineering
University of Rochester

1vkhatri2@ur.rochester.edu, 2ldilling@ur.rochester.edu

ABSTRACT

In this paper, we propose two methods to identify tuning
on a guitar from its MIDI transcription. Recently, a lot of
musicians have been using alternate tunings and defining
new styles of guitar based music. However, it is not easy to
transcribe, study and learn such pieces without the knowl-
edge of what tuning the guitar has. To address this prob-
lem, we propose two methods: first, a supervised learning
algorithm to identify the tuning from a fixed set of tunings
using an LSTM-based neural network; second, a dynamic
programming algorithm that chooses a tuning with mini-
mum distance measure on the optimal set of note locations
a song can have for the given tuning.

1. INTRODUCTION

Guitar, along with piano, has been one of the most pop-
ular musical instruments in the past 70 years. While it
has existed in many forms in the past, the current version
was designed circa 1850, and has remained the same since
then. It started off being widely used in blues and gypsy
jazz music and it gained popularity with rock and metal
music, where its use has been very streamlined. Due to
this, the evolution in guitar music has been very technol-
ogy based and not instrument-dependent. However lately,
a lot of musicians have started to alternate tunings for gui-
tar. This requires thinking beyond the existing "knowledge
bank" of guitar, which might include heavy usage of power
chords, barre chords, pentatonic scale, etc. This is because
the fingering and the chord shapes, that the guitarists are
used to, are not applicable anymore to the new tuning.

In this paper, we attempt to perform the task of identi-
fication of guitar tuning from MIDI transcriptions of this
song. This hasn’t been done before, but a similar task was
performed in [2] where the author attempted to identify
active stops on a pipe organ using Non-negative Matrix
Factorization. However, unlike organ, guitars are post-
processed using pedals, amplifiers, etc., which creating a
generic model to represent timbre is difficult. Hence, we
stuck on using MIDI as input to out model.

To further understand the differences existing in differ-
ent tunings, we break down the problem into three tasks:
Chord recognition, key identification and interval analysis.

Chord Recognition is a useful task in guitar tuning iden-
tification as a different tuning enables the guitarist to use
certain chord voicings, which may be unique or more prob-
able in that tuning than other tunings. Chord voicing is the

process of arranging the notes in a chord in a different or-
der in order to obtain different sound. For example, the
notes F, A and C make up the F major chord. If the low-
est note is F, followed by A and then C, that is a regular F
major. However, if A is the lowest note, followed by F and
then C, we call it the first inversion and it sounds differ-
ent. Composers often use these different voicings to make
interesting compositions, but the probability of occurrence
of different voicings is more in alternate tunings.

Next, some of the most popular alternate tunings are
open chord tunings such as open C, open D, open G, etc.,
in which all strings are tuned to the notes of a particular
chord (e.g., CGCGCE for open C). It can be assumed that
a song using an open C would be in the key of C major.
Hence, determining the key helps in asserting the guitar
tuning used in the song.

Lastly, the intervals used in a note progression are ob-
served to be different for different songs. Rock music
involves heavy usage of pentatonic scale, which can be
very ergonomically played in standard tuning. However,
recently a lot of math roch/indie musicians are compos-
ing songs which use alternate tunings and these songs use
different intervals, which make their compositions sound
different. A probabilistic model exploiting the aforemen-
tioned ideas would perform well in this task. However, it’s
somewhat difficult to model. We approach this problem us-
ing an LSTM-based model, which uses MIDI information
of the songs and identifies the tuning. We also propose a
dynamic programming based approach which determines
optimal note locations for different tunings and chooses
the one which is least difficult. This is a difficulty-based
model, which assumes that the most ergonomic fingering
positions are always chosen over the more difficult ones.

The problem of guitar tuning identification is interesting
as it not only helps learners pick up and study new songs,
but also helps with automatic guitar tablature generation.
Further, it will also help in analysing different styles of
guitar music by learning mathematical representations of
the styles, as tuning is something very integral to the in-
strument.

The rest of the paper is arranged as follows: In Sec-
tion 2, we detail the process we followed to create a new
dataset for this task using guitar tabs from Ultimate-Guitar
(https://www.ultimate-guitar.com). In Sec-
tion 3, we detail the proposed methods for this classifica-
tion task. In Section 4, we discuss the results from initial
testing of the software and in Section 5, we provide our

Figure 1. Figure captions should be placed below the fig-
ure.

conclusion and discuss future possibilities with this task.

2. DATASET

To prepare the dataset, around 90 GuitarPro files were col-
lected for each tuning. The GuitarPro files were mostly
downloaded from Ultimate-Guitar. GuitarPro files contain
the tabulature and sheet music of the song. They contain
information about guitar tracks as well as information for
other instruments such as piano, drums, or even vocals.
The open-source tabulature editor TuxGuitar was used to
manage and inspect the GuitarPro files.

After being converted from guitar pro files to .xml, the
python library Music21 was used to parse the files. Mu-
sic21 essentially parses an .xml file and organizes a piece
of music into classes of parts, measures, and notes, and
also contains information such as the songs BPM and key,
all of which can then be manipulated. From these .xml files
matrices based on the notes in each measure were used as
the input to the model. For every four measures, a 128x60
piano-roll matrix was created where 128 is four measures
of 32nd notes. 60 corresponds to the possible range of
MIDI notes from the four tunings that were chosen with
B1 being the lowest note and A#6 being the highest. For
every note, a value of 1 is placed into the piano-roll matrix
corresponding to its duration and MIDI number. Notes not
being played and rests have a value of zero. These matrices
were then labeled for training. An example of a piano-roll
matrix can be seen in Figure 1.

Tuning # Measures (x4)
Standard (EADGBE) 6523
Open D (DADF#AD) 5114
Open G (DGDBGD) 3292
Open C (CGCGCE) 6011

Table 1. Number of Four Measure Bars for Each Tuning
in dataset

The piano-roll matrix is ideal for the input of the neu-
ral network as it preserves chord structures such as inver-
sions as well as preserves the temporal information of the
song. This multi-hot encoding is preferred here as provid-
ing a "note vector" would require an Embedding layer to

encode the data. For example a C major chord could be
represented as the midi notes (60, 64, 67), but would also
require information about the starting beat and its duration,
while the piano-roll matrix already contains this informa-
tion.

To ensure that one tuning does not have vastly more in-
formation than others, the number of four bar segments
were counted and it was made sure that the dataset is not
too skewed. From the collected songs, we then divided the
files to be trained, validated, and tested. for each tuning,
70% 0f the files were used for training, 15% was used for
testing, and 15% was used for validation.

3. METHODOLOGY

3.1 Method 1: Deep Neural Networks

As mentioned earlier, we needed a method that could per-
form the tasks of key identification, interval analysis and
chord recognition. This information needed to be inter-
preted from the multi-hot piano-roll that was generated
using the .xml parser described earlier. An initial model,
based on [1], used two-dimensional Convolutional Neural
Network (CNN) which performs classification on single-
measure inputs. The problem was perceived to be an im-
age classification problem, in which the distances between
the MIDI-note lines are intervals and could be interpreted
as frequencies in the image. The offset of the MIDI-note
would contribute to the key of the song. However, the time
dependency between notes in a "piano-roll picture" was not
captured by the CNN and hence, the CNN-based model
didn’t work well for this problem.

To solve that issue, we decided to use a Recurrent Neu-
ral Network (RNN), which would capture the time depen-
dencies between the notes. The input to the network is a
multi-hot encoded 32nd note frame. Since the input vector
is already encoded, we do not use an embedding layer to
generate an embedding. Instead, we use a single fully con-
nected layer to represent the sparse, multi-hot data as float
values. This is followed by an LSTM layer. The hidden
state size for the LSTM layer is 128, which is 4 measures
worth of data. In essence, the network looks back 4 mea-
sures and incorporates the information to do classification.
The recurrent layer is followed by a fully connected layer
and then the output. We used leaky ReLU as activations
in both fully connected layers and softmax in the output to
represent probabilities for each class.

3.2 Method 2: Dynamic Programming

Each note in a song can have up to six locations on the
guitar fret board, and these locations vary for each tuning.
By calculating the distance between note positions, it is
possible to determine the optimal set of note locations for
a song and in turn determine the optimal tuning for a song.
An example of a three note sequence with possible note
locations can be seen in Table 2.

The cost matrix for note i with possible positions j can
is computed using the following formula:

Figure 2. RNN Model

cost[i, j] = min(cost[i− 1, k] + dist(xi,j , xi−1,k)),

k ∈ {1, ..., N}
(1)

where N is the number of possible locations for note
i− 1 and dist is a distance function defined by

dis(x1, x2) =

0 if x1 or x2 = 0
|x1−x2|

(x1−x2)
1
12 min(x1,x2)

otherwise

(2)
This distance function accounts for open strings being

easy to play by assigning it zero cost. Also, the same in-
terval is easier to play higher frets, as they are smaller than
lower frets. We used the ratio of the distances of two con-
secutive frets, 12

√
2, or approx. 1.059463, to reduce the

penalty for higher fret locations.
If in the sequence note i is a chord, all combinations

of valid note locations in the chord are computed and the
combination with the minimum distance between all notes
is selected. The location of the chord is simply the mean of
the x and y coordinates (approximately the center of mass)
of all notes.

The cost of the optimal note location set is compared
between all tunings to to then determine the optimal tun-
ing.

Possible Note Locations,
j (string, fret)

i− 1i− 1i− 1 iii i+ 1i+ 1i+ 1
(6, 20) (6, 24) (5, 22)
(5, 15) (5, 19) (4, 17)
(4, 10) (3, 9) (3, 12)
(3, 5) (2, 5) (2, 8)
(2, 1) (1, 0) (1, 3)

Table 2. Note Sequence and Possible Locations for Stan-
dard Tuning

4. RESULTS

We use normalized confusion matrices to visualize the per-
formance of the system. The diagonals of the confusion
matrices indicate the True Positive Rate (TPR).

Figure 3 shows the confusion matrix of the 48 songs
used for testing. The results show that the architecture is
successful in identifying the tuning of a song as three of
the four turnings are successfully identified over 70% of
the time. There are some problems however, as can be seen
with the open G (CGCGCE) tuning. This problem is most
likely due to the dataset being skewed, rather than a signif-
icant problem with the architecture. Currently open G has
the least number of four measure bars out of the four tun-
ings despite having a similar number of songs. One method
to potentially improve the accuracy of the algorithm is to
simply increase the data, and especially for the pen G tun-
ing. A table showing the number of four bar measures can
be seen in Table 1.

Summing all the predictions of four bar measures in a
single song and taking the tuning with the most number of
predictions is how the tuning of an entire song was pre-
dicted. It can be seen that the results for entire songs are
quite better than those of single four measure bars. The
confusion matrix for entire songs can be seen in Figure 4

The confusion matrix using dynamic programming can
be seen in Figure 5. It must be noted that the dynamic
programming method purely calculates the cost of a song
and does not predict the tuning. The original tuning a song
will often have the lowest cost, but this is not often the case.
This could perhaps be a reason why there is confusion in
standard tuning. For example, pop and rock songs often
use power chords which would have a distance of zero in
open D tuning.

5. FUTURE WORK AND CONCLUSION

The problem of identifying the tuning of a guitar from a
set of notes is intriguing. We have shown that an RNN
model can be trained using common patterns of notes and
chords that occur in a given tuning. This in turn can predict
the tuning for that set of notes to a decent level of success.
The dynamic programming method also had good initial
results, showing that an optimal tuning can be calculated
for a set of notes in a song.

Our model does have some limitations, however. This
can mainly be seen in the confusion matrix with the
DADF#AD tuning. The dynamic programming method
has some confusion in standard tuning as well. Future

Figure 3. Confusion Matrix of Each Four Bar Measures.

Figure 4. Confusion Matrix of per Song.

Figure 5. Confusion Matrix per Song using Dynamic Pro-
gramming

work to improve our results could include collecting more
data for the dataset. Adjusting the hyperparameters of the
model could further improve performance as well. For
dynamic programming, incorporating time between notes
into the distance calculation as well as fine tuning the dis-
tance equation is something to consider. Incorporating
an RNN model and dynamic programming into a single
method could combine the strengths of both methods and
lead to better results as well.

6. REFERENCES

[1] A. Maezawa B. Li and Z. Duan. Skeleton plays pi-
ano: online generation of pianist body movements
from midi performance. In Proc. International Society
for Music Information Retrieval (ISMIR), 2018.

[2] A. Coe. Pipe organ stop identification via non-negative
matrix factorization. In Computer Audition, University
of Rochester, 2018.

