
Guitar Tuning Identification
Lukas Dillingham and Varun Khatri

Department of Electrical and Computer Engineering, University of Rochester

We propose two methods to identify tuning on a guitar from its MIDI
transcription. Recently, a lot of musicians have been using alternate
tunings and defining new styles of guitar based music. However, it is
not easy to transcribe, study and learn such pieces without the
knowledge of what tuning the guitar is on. To address this problem,
we propose two methods: one, a supervised learning algorithm to
identify the tuning from a fixed set of tunings using an LSTM-based
neural network; two, a dynamic programming algorithm that chooses
a tuning with minimum distance measure on the optimal set of note
locations a song can have for the given tuning.

The Problem

Dataset

Approach 1 – Deep Learning Results - Evaluation - Future Work

Conclusion and Future Work

Abstract

Approach 2 - Dynamic Programming

● A difficulty based model.
● Can use dynamic programming to calculate the optimal combination of note

positions for a given note sequence and tuning

𝐶𝑜𝑠𝑡 𝑖, 𝑗 = min(𝐶𝑜𝑠𝑡 𝑖 − 1, 𝑘 + dist 𝑥5,6, 𝑥578,9 , 𝑓𝑜𝑟 𝑘 ∈ {1,… ,𝑁}

where 𝐶𝑜𝑠𝑡 is the accumulated cost up to note 𝑖 at position 𝑗, and 𝑁 is the
number of possible note locations for note 𝑖 − 1.

dist 𝑥8, 𝑥A is the distance function calculated as follows:

dist 𝑥8, 𝑥A =

0, 𝑥8 𝑜𝑟 𝑥A = 0
𝑥8 − 𝑥A

(𝑥8−𝑥A)
8
8A(min 𝑥8, 𝑥A)

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Open strings have no distance (when the fret number is zero)
• Vertical change (change in y) between strings have no distance
• If a chord is played, the minimum distance of all valid position combinations

of the notes in the chord is taken

● Guitar Pro files containing tablature was downloaded from
Ultimate-Guitar.com

● Python library music21 was used to parse files
● Notes were stored as a piano-roll matrix with midi note number and four

measures with 32nd note intervals as axis

Note Sequence and Possible Locations for Standard Tuning

Possible Note
Locations 𝑗
(string, fret)

Note 𝑖 -1
C4 (60)

Note 𝑖
E4 (64)

Note 𝑖 + 1
G4 (67)

(6, 20) (6, 24) (5, 22)
(5, 15) (5,19) (4, 17)
(4, 10) (3, 9) (3, 12)
(3, 5) (2, 5) (2, 8)
(2, 1) (1, 0) (1, 3)

Collected Songs in Dataset
Standard
(EADGBE

Open D
(DADF#AD)

Open G
DGDGBD

Open C
CGCGCE

Number of
Songs 55 126 90 92

Number of 4
Measure Bars 6523 5114 4289 6011

● Confusion matrix by song is made by summing all predictions 4 measure
bars and taking the maximum.

● Confusion in Open G (DGDBGD) could be a result of having less information
in the dataset.

● The cost matrix purely calculates cost. We assume that the original tuning of
a song will have the minimum cost in most cases, but this is not always the
case.

● Low score on standard is likely due to:
-> Power chords are easier to play in Open D.
-> Many songs are in Am and Em which are easier to play in Open C and G.

EA
DG

BE
DA

DG
AD

• Timbre Modeling
• Key Identification
• Interval Analysis
• Chord Recognition

(Inversion, Drop chords)
• Identifying Lowest Note

• Input is passed through a fully connected layer to reduce dimensionality.
• An LSTM captures time dependency between notes and models the

transitions from one note to the next.
• Output is a vector of soft probabilities for 4 classes: Standard, Open D, Open

G and Open C

RNN - 4 Measure Bars RNN - Songs

Dynamic Programming

The problem of identifying the optimal guitar tuning to play a set of notes is
intriguing. We have shown that an RNN model can be trained using common
patterns of notes and chords that occur in a given tuning. This in turn can
predict the tuning for that set of notes. We also showed that dynamic
programming can be used to calculate the cost a song has for a given tuning
based on difficulty. Both methods had decent levels of success.

To improve our results some future work could include:
• Collecting more data for the dataset
• Adjusting the hyperparameters of our model
• Experimenting with different distance functions in the DP algorithm

