ONE-CLASS NEURAL NETWORK FOR ANTI-SPOOFING IN SPEAKER VERIFICATION

Introduction

Speaker verification plays an essential role in biometric authenti-
cation since it uses acoustics features to verify whether the given
utterance is from a target person. The given utterances are usually
expected to be genuine speech. However, speaker verification can
be susceptible to spoofing attacks, such as impersonation, replay,
text-to-speech, or voice conversion, that can fake speech to fool the

verification system [6].
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Fig. 1: Anti-spoofing and speaker verification systems.
Researchers have made some efforts to develop methods to detect
whether the input speech is from a real person rather than spoof-
Ing attacks. Spoofing attacks detection is called anti-spoofing as a
research topic. The ASVspoof challenge series [5, 2, 3] have been
providing datasets and metrics to investigate countermeasures to
defend against spoofing speaker verification.

Inspired by [4], one-class classification methods can set a tight
boundary for genuine speech in high dimensional feature space.
As a result, most spoofing attacks are considered as outliers which
maps outside of genuine speech in feature space. In our proposed
system, we first train a CNN classifier with some traditional features
to learn the latent high dimensional features representation that can
discriminate spoofing attacks and genuine speech. Then the ex-
tracted features are used to train One-class Neural Network (OCNN)
to model the distribution of genuine speech. Finally, the proposed
system outputs a score to indicate the probability that the input ut-
terance belongs to real speech.
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Fig. 2: Proposed model structure.
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A convolutional neural network (CNN) is first trained to classify the spoofing
attacks and genuine speech. We divide the CNN into two parts: the convo-
lutional layers are used as feature extractor, and the fully connected layers
are decoder classifiers.
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Fig. 3: Convolutional neural classifier.

One-class Neural Network (OCNN) is the state-of-the-art anomaly detection
method [1]. The OCNN is designed as a feedforward neural network with
one hidden layer and one output node. The training objective for OCNN is
formulated to be equivalent to the loss function of One-class Support Vector
Machine (OCSVM):
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where w Is the weight matrix from hidden layers to output, V' is the weight
matrix from input to hidden layers. ¢(-) is the activation function for the hidden
layer. Given training data X, ¢ (VVX,,.) is the mapped vectors that separate
most normal data points as far as possible from origin. The nonlinearity of
the mapping function makes it outperform OCSVM which uses ¢ (X,,.) for
this term. (w, g (VX,, :)) is the scalar output of the OCNN and r is the bias
of the hyper-plane. v € (0, 1) is a parameter to control the significance of the

regulation term in order to prevent overfitting.
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Fig. 4: One-class Neural Network.

During the inference stage, the decision score v, is the output of OCNN and
r is the threshold. If the decision score y,, Is larger than r, the sample is
considered as normal data, otherwise anomalies.
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1.Equal Error Rate (EER

Equal Error Rate is a threshold for the decision score where false
alarm rate is equal to the miss rate.

~ #1 spoof trials with score > 0}
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folf) #{ total spoof trials }
~ #{ human trials with score < 6}
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miss () #{ total human trials }
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2. Tandem detection cost function (t-DCF)
The tandem detection cost function assess the influence of coun-
termeasure system on the reliability of ASV system.

Table 1: Comparison of baseline methods:

Methods LFCC+GMM CQCC+GMM LFCC+CNN CQCC+CNN
EER(%) 8.09 9.57 6.45 13.26
t-DCF |0.2116 0.2366 0.1633 0.3578
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Fig. 5: ASV score and CM score for LFCC+CNN.
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