
Energy-Informed NMF for Polyphonic Piano MIDI Transcription

Ben Kevelson Teghan Murray
University of Rochester

bkevelso@ece.rochester.edu
University of Rochester

tmurr16@ece.rochester.edu

ABSTRACT

NMF (Nonnegative Matrix Factorization) has many
applications in audio signal processing, one of the most
prominent of which is pitch detection. Using constrained
dictionary elements for highly accurate polyphonic piano
pitch detection in tandem with the timing information
provided by the associated activation functions, it is
possible to generate MIDI transcriptions that contain a
wealth of information. Our proposed method uses NMF
for pitch and timing of notes and spectral information to
determine velocity and correct octave errors. This allows
us to create more informative MIDI files. Our method is
shown to output accurate pitch information.

1. INTRODUCTION

Automatic Music Transcription (AMT) is a group of tasks
that attempts to take a musical audio input and
automatically transcribe the notes, often to a piano roll.
AMT is a field that encompasses many problems that
audio signal processing algorithms attempt to solve, such
as pitch, beat, tempo, and onset detection. This is part of
what makes automatic transcription difficult; algorithms
have to solve all of these problems in tandem. AMT is
useful in many cases, including music creation,
production, and music search engines [1]. Since it is
made up of so many difficult problems, there have been
many papers every year for decades that attempt to tackle
AMT in some way. Pitch detection is a difficult problem
because of the multiple harmonics that are present in each
played note. Especially difficult is the task of polyphonic
pitch detection, since the harmonics may overlap and
interfere with peak detection. Additionally, different
instruments have different harmonic contents, which adds
to the complexity of the problem. For this reason, we
choose to limit our method to piano recordings. Another
task present in many pitch detection projects is the
correction of octave errors. Since many pitch detection
algorithms rely on frequency analysis, differentiating
between different octaves of the same note is difficult
since their theoretical harmonics are the same.

Music transcription today is dominated by neural
networks (NNs) and NMF algorithms. NNs are useful for
pattern detection, and can therefore be used to detect
harmonics and perform pitch detection. NMF is an
elegant solution, since it can perform pitch detection (by
training each dictionary element to detect one pitch) and
onset detection (in its activation elements)
simultaneously. The greatest hurdle in NMF for

automatic music transcription is that it is difficult to
extract individual notes. Using random initialization
along with any piano piece as the training audio will very
rarely result in a set of dictionary elements, each of which
represents a single piano note. We circumvent this
problem by limiting our system to only transcribing one
particular piano at a time. Grand pianos will have
different harmonic elements than upright pianos, so it is
very difficult to find dictionary elements that can
generalize to both instruments. Therefore, we limit
ourselves to a single piano instrument that our algorithm
can learn specific dictionary elements for. This allows us
to make our transcription more accurate, while sacrificing
generalization. Our proposed method is to take
state-of-the-art NMF for polyphonic pitch detection and
to create a highly informative MIDI file using spectral
information. In Part 2, we discuss our dataset. In Part 3,
we discuss our method of polyphonic pitch detection
using NMF. In Part 4, we discuss the MIDI transcription
algorithms. In Part 5, we discuss our results.

2. DATASET

We could, theoretically, train our method to work for any
piano instrument, as our updated method learns the
template vectors of each note through the iterative
process. This means that we can use an audio recording
as our input to transcribe, but doing this alone presents
some challenges in terms of results. Any audio signal
used as input without a corresponding MIDI file would be
hard to compare to the MIDI output, as the audio signal
does not have a comparable visual medium (such as a
piano roll for MIDI) as well as corresponding numerical
values. It is much easier to compare MIDI-generated
audio signals to MIDI output, as we can get quantitative
results to compare note values, timings, and velocities.
For this reason, we generate all input audio signals using
Arturia’s Analog Lab V plugin, under the ‘Japanese Jazz
Studio’ piano preset.. This allows us to compare the
original MIDI roll used to generate the inputs with the
calculated MIDI output, rather than comparing audio
signals to MIDI. To summarize, we use the audio signal
generated from MIDI roll as input to the NMF process,
convert the calculated NMF vectors into our MIDI
transcription, then compare the generated MIDI
transcription to the original MIDI roll used to generate
the input.



Energy-Informed NMF for Polyphonic Piano MIDI Transcription

3. NMF METHODS

NMF is the process of estimating two component
matrices W and H, such that their combination WH is an
approximation of some input matrix V (such that V ≈
WH). An iteratively-calculated loss function, often
metrics such as Euclidean distance and Kullback-Leibler
(KL) divergence, is minimized via iterative update to one
or both of the component vectors W and H.

Figure 1. KL Divergence formulas for multiplicative update of
W and H vectors in the NMF algorithm.

As implied by its name, the process includes the
stipulation that all three matrices have no negative
elements. This property of NMF is especially useful when
considering audio applications, as using the magnitude
spectrogram of an audio waveform as the input matrix V
satisfies the inherent non-negativity of the process. This
also serves to make the calculated component vectors
easier to interpret as physical quantities. When
considering the case of a spectrogram of a musical signal
(in this case, a piano specifically), the matrix W can be
construed as a series of templates for each note that is
played in the signal, and the matrix H can be construed as
the activations (durations) of each of these respective
templates. This lends itself well to the MIDI transcription
component of our work, as the template vectors can be
made to be representative of discrete notes and the
activation vectors can roughly describe velocity and
duration of the note as it would exist in a MIDI format.

Figure 2. Examples of learned W and H vectors from NMF
process. The W vectors (left) represent the harmonic spectrum

of each note, and the H vectors (right) represent the activations
of each learned note.

In the baseline NMF method, the matrices W and H
are initialized randomly, and learn their respective vector
formats via the aforementioned iterative update process.
However, this baseline method has considerable
drawbacks when considering our use case. When the
component matrices are unconstrained and initialized
randomly, the learned template vectors of W may not be
representative of a single note – rather, the vectors may
become representative of multiple notes, or no note at all.
Additionally, the learned activation vectors of H may not
be representative of the durations of their respective
template vectors in W. Other errors have been known to
arise in this process, such as octave errors (see Section
4.4), but there are methods to modify the baseline NMF
process that mitigate these drawbacks.

In [2], a method is described for constraining the
vectors of W by pre-generating an expected harmonic
series for each note, widening the expected regions to
account for inharmonicity, and leaving all other values as
zero. The advantage of this is that the zero-values regions
of the vectors will remain zero during the multiplicative
update process, which encourages each of the template
vectors of W to learn the structure of a single note. This
also encourages the activation vectors of H to learn a
more accurate description of the note durations, thereby
making the entire process more accurate. We apply this
constrained template vector method in our work. [2] also
applies constraints to the activation vectors of H using
existing information from a corresponding MIDI file for
each input. This method further strengthens the accuracy
and robustness of the method, but introduces the
contingency that the system requires MIDI input for each
file. We are unable to use this method in our application,
as we want our system to be blind to MIDI input since it
is creating MIDI output. Requiring a corresponding MIDI
input for each input signal would make the project’s
purpose entirely redundant. However, we still seek to
apply a method for constraining the activation vectors of
H, but are unable to apply the methods used in [2].

To this end, we propose a method for pre-generating a
rough structure for the activation vectors. We use an
estimate of note onset and intensity decay based on the
original magnitude spectrum input, as opposed to
initializing the vectors of H randomly. The total energy at
each frame of the linear magnitude spectrum is summed,
which corresponds to the total number of frames
represented in the learned vectors of H. We find that the
spikes in energy at certain frames correspond to note
onsets, but summing this information from the magnitude
spectrum leaves us unable to manually discern which
template vectors these peaks correspond to. Thus, we
initialize each activation vector as the summed magnitude
spectrum of the input, and allow the NMF process to
iteratively learn which peaks correspond to which
templates. This will give the vectors a basic structure
during the learning process, similar to the methods
described in [2], but does not require score information.



Energy-Informed NMF for Polyphonic Piano MIDI Transcription

As described in Section 5, this also introduces a
drawback in the form of increased octave errors, which
makes sense since note space an octave apart are being
initialized with the same activation vectors, meaning they
are more likely to learn errors. However, our octave error
correction is able to mitigate this to some extent, as
described in Section 4.4.

4. MIDI TRANSCRIPTION

4.1 MIDI Formatting

MIDI is an obvious format to be used for music
transcription. Most automatic transcription algorithms
output some kind of piano roll, designating onset and
offset times and the note being played. MIDI files are
convenient because of their small file size and well
documented formatting. They are also widely used in
music production, especially as music instrument plugins
improve in quality. A MIDI file is made up of a series of
MIDI messages, each made up of three bytes; the status
byte and two data bytes. The status byte indicates what
type of message is being relayed (for example, relevant to
our work are the NoteOn and NoteOff messages). For the
NoteOn and NoteOff messages, the data bytes contain the
MIDI note number and the velocity (which represents the
relative volume of the MIDI note). The MIDI note
number is determined by which dictionary element is
being activated. The velocity we determine from spectral
information, which is discussed in Section 4.3.

In order to create a MIDI file as our output, we first
have to satisfy the requirements of MIDI formatting. All
MIDI files begin with a MIDI header file, which contains
metadata about the piece. The information relevant to our
work are the BPM of the piece, the length of the entire
MIDI file, and the ticks per quarter note. We can generate
a header file that contains our desired specifications.
After the header file, we insert the track information
(containing the length of the MIDI file). Afterwards, all
MIDI messages are listed. Each MIDI message is
preceded by its timing, given in ticks. Within a MIDI file,
all timing is presented in ticks, which determine the
timing resolution of a MIDI file. The amount of time that
a tick represents depends on the BPM of the MIDI file.
Each MIDI quarter note is divided into ticks (typical ticks
per quarter note values are 240, 480, and 960) [3]. Using
the ticks per quarter note information, we can convert
from timing (in seconds or samples) to timing in ticks.
Finally, we end our MIDI file with an All Notes Off
message, which will end any notes that are playing at the
end of the piece, followed by the End of Track message
present in all MIDI files. With all of this formatting
information, we can create a MIDI file from a list of
desired MIDI events [4].

4.2 MIDI Transcription

Using the trained dictionary elements, we can use the
NMF to output activation functions for any given piano
audio (provided it is the same instrument that we used to

train the NMF). The simplest way to accomplish MIDI
transcription is to set a threshold for the activation
functions. When the threshold is passed (when rising) a
NoteOn message can be generated, and when it is passed
(when falling) a NoteOn message is generated. The MIDI
note number is determined by the associated dictionary
element, all of which are labeled. To create timing events
in a MIDI file, it is necessary to convert the window
number (from the NMF output) to seconds (using
information from the STFT performed) and then to ticks
(using the BPM and ticks per quarter note information
provided in the MIDI header file).

We then generate a list of MIDI events. Each event
must include the note number, if it is a NoteOn or
NoteOff event, the timing between events (in ticks), and
the velocity. This is then converted to MIDI format by
taking the difference in ticks between events, then
creating the event with the appropriate NoteOn or Off
status byte message and data bytes.

The activation functions show prominent peaks when
activated, and it is visually very easy to see where notes
occur and what pitch they’re at. However, there is some
noise in the elements that aren’t being activated. At
polyphonic events, the activation functions still appear as
peaks, but they tend to have a smaller amplitude. To fix
this, we could just lower the threshold, but since there is
some noise this will create extra, unwanted notes at the
noisy peaks. To account for this we added a simple low
pass filter at 20 Hz to get rid of some noise. We also
choose to go a step further and perform adaptive
thresholding. The threshold at each frame is set to be
proportional to the total magnitude of the audio input at
that frame. This prevents erroneous notes from occurring,
and allows us to generalize the thresholding to any audio
file. Raising the threshold at louder sections of audio
prevents the noisy peaks from becoming notes. The
combination of the LPF and the thresholding means
works to prevent incorrect noteOn messages. . The timing
and note number can be obtained from the NMF
information, but we chose to further increase the amount
of information present in our file by incorporating
velocity.

4.3 Velocity

To increase the realism of our transcription, we wanted to
also include velocity information. Our goal is to create a
system that could determine the relative volumes of
multiple notes that were played at the same time. To do
this, we gathered information from a series of notes
played at different velocities. We generated a MIDI file
that played several quarter notes at the pitch C4, playing
at different velocities (beginning at 120 and descending
by a step of 10 to 20). lThis MIDI file was output as
audio, then run through the same STFT that is used as the
input to the NMF function. We then chose the audio
frames immediately after the onsets of the notes.
Converting to the linear magnitude spectrum, we
visualized the frequency spectrum of the notes. We chose
the values of the first 10 peaks occurring at integer



Energy-Informed NMF for Polyphonic Piano MIDI Transcription

multiples of the fundamental frequency of the input piano
note. We summed the values of these peaks for a range of
velocity values, then calculated a line of best fit to allow
us to approximate the velocity from the value of the sum
of peaks. Using the linear magnitude values is useful
because it is easier to calculate; the magnitude of the
spectra will show only positive peaks (at multiples of the
fundamental frequency), while the dB magnitude spectra
will show peaks and valleys that are more difficult to
detect. We also created lines of best fit for both the linear
and dB magnitude spectra to ensure that information
wasn’t being lost. Testing with the dB magnitude
spectrum was no more accurate than the linear magnitude
spectrum was, so to reduce computational complexity and
improve visibility, we kept the linear spectrum. The peaks
of the linear magnitude spectrum and the values of the
harmonics can be seen in Figure 3. The values of the
peaks were determined using a fitted polynomial
interpolation of the frequency spectrum 5 samples before
and after the theoretical peak. This allows us to use only
the peaks that are relevant to the note of interest. The
interpolation is necessary because the frequency
resolution of the STFT is not quite fine enough to give
the index of the exact integer multiple of the fundamental
frequency.

We found that an arctangent function provided the best
fit for the relationship between the peak sums and the
velocity. From our data, we saw that the curve flattens out
at larger dB values. This also aligns with typical
audio-to-MIDI values; it is rare that velocities greater
than 110 occur. For these reasons, we used an inverse
tangent function that flattens out around values of 120.
Rounding is also necessary for MIDI file creation.
Unfortunately MIDI velocities only have 7 bits of
resolution (0-127), so it is necessary to round all
calculated values to integers when creating the MIDI file.

4.4 Octave Error Correction

One aspect of pitch detection that is difficult to solve is
octave errors. This is a common error that occurs in NMF
pitch detection. [5] When solely depending on the NMF,
octave errors occur because the dictionary elements for
multiple octaves of the same note can be activated. When
working on this paper, we encountered several instances
where the incorrect harmonic had a greater activation
than the correct harmonic. A difference of an octave is
not a very large difference to the human ear, and the
perception of a “wrong” note in the incorrect octave will
not sound dissonant when played back [6]. However, our
goal is to create highly accurate MIDI transcription and
we have the advantage of having ground truth values to
easily compare to.

Our proposed method to solve this problem is to
exploit the fact that we are working solely with piano
transcription. Piano notes have strong peaks at integer
multiples of the fundamental frequency [7]. This means
that within a given range of frequencies, higher frequency
notes will have fewer peaks. Since we have an accurate
guess as to what the note is from the NMF, we can

generate a number of frequencies that the pitch could be
at. We then detect the number of peaks that actually occur
at these frequencies. Counting the number of peaks that
actually occur will tell us what octave is actually being
played (see Figure 1). We also have the advantage of only
needing to select from 2-3 possible octaves, since the
NMF is accurate enough to limit the selection.

Figure 3. Comparison of peaks between two notes one octave
apart. Note that the top spectra has peaks at all multiples of the
fundamental (noted by dotted lines), and the bottom has peaks at
every other fundamental.

5. RESULTS

Currently, our work has yielded moderately accurate
MIDI transcription results. The NMF can be successfully
trained to determine a highly accurate set of dictionary
elements for a given piano (in our testing, provided by
exporting audio from a high-quality MIDI instrument
plugin), as well as moderately accurate dictionary
elements for raw piano signal input (not generated with
MIDI). Our MIDI transcription is capable of accurately
determining timing, velocity, and note numbers.
However, the timing of the NoteOn and NoteOff
messages is still inaccurate. Our thresholding algorithm
does not always accurately create new notes when the
same note is played twice in a row. Instead it sometimes
creates one long note (see Figure 4). The inclusion of our
magnitude spectrum initialization for H vectors helps to
alleviate some issues with the inaccuracy of NoteOn and
NoteOff messages, but introduces other inaccuracies,
mainly in the form of octave errors. The octave error
correction methods described in Section 4.4 are able to
mitigate this to some extent, but further work is required
to find a tuned balance between these methods that
creates output which mitigates all of these drawbacks.

The velocity values are also not exact. This presents
another drawback in that it is not exactly accurate.
However, since the purpose of our algorithm is to
perform piano transcription from audio recordings, this is
not necessarily a huge problem. We will be dealing with



Energy-Informed NMF for Polyphonic Piano MIDI Transcription

much more dynamic audio files (not all notes being
played at the same velocity), so the MIDI output will
therefore be more dynamic and “human” sounding. The
results are also visually deceptive, since our output looks
much more messy than our input. This is because our
output does not create highly accurate noteOff values.
This is a less important issue to us, as discussed in the
following section.

Figure 4. Comparison of ground truths (top) and our current
MIDI output (bottom).

6. CONCLUSIONS AND FUTURE WORK

There are some improvements that can be made to
increase the robustness of our code. The velocities of
notes in chords are smaller than individual notes. Pulling
more data from polyphonic chords and velocities could
lead to the creation of another model for chord velocities.
We are also hoping to improve the onset and offset
detection for the timing of our MIDI notes. The onset
detection can be improved by creating separate dictionary
elements for the piano onsets (which have different
spectral energies, due to the impact of the hammer on the
piano strings). These separate dictionary elements could
give more accurate onset timings. We are less concerned
with improving the accuracy of the offset timings. Since
we are specifically working to output a MIDI file to be
used with a piano instrument plugin, the offset timings
are less particular. A piano note that is notated as being 4
beats long and one that is noted as 2 beats long will sound
very similar for most piano MIDI instrument plugins.
Piano notes do not sustain unless the sustain pedal is
depressed, which is a separate MIDI event.

Overall, we have succeeded in our goal of creating a
system of polyphonic piano MIDI transcription. We can
successfully train an NMF set of dictionary elements to
reliably recognize pitches of any given piano, provided
we have an audio file of that piano playing a chromatic
scale. We can then use those dictionary elements and
activation functions to generate a MIDI file that mimics
the input audio file.

7. REFERENCES

[1] Benetos, E., Dixon, S., Duan, Z., & Ewert, S.
(2019, January). Automatic Music Transcription: an
Overview. IEEE Signal Processing Magazine, 36(1).

[2] Ewert, S., & Müller, M. (2012). Using
score-informed constraints for NMF-based source
separation. IEEE Xplore. Retrieved December 5, 2022,
from
https://www.semanticscholar.org/paper/Using-score-infor
med-constraints-for-NMF-based-Ewert-M%C3%BCller/b
aa567da56f5ac88f24a628f147b0cb682a2a918

[3] Convert MIDI files into MIDI messages. Convert
MIDI Files into MIDI Messages - MATLAB & Simulink.
(n.d.). Retrieved December 5, 2022, from
https://www.mathworks.com/help/audio/ug/convert-midi-
files-into-midi-messages.html

[4] Official MIDI Specifications. The MIDI
Association - Home. (n.d.). Retrieved 2022, from
https://www.midi.org/specifications

[5] Sha, F., & Saul, L. K. (n.d.). Real-time pitch
determination of one or more voices by nonnegative ...
UC San Diego. Retrieved 2022, from
https://cseweb.ucsd.edu/~saul/papers/nmf_nips04.pdf

[6] Wagner, B., Mann, D. C., Afroozeh, S.,
Staubmann, G., & Hoeschele, M. (2019, January 1).
Octave equivalence perception is not linked to vocal
mimicry: Budgerigars fail standardized operant tests for
octave equivalence. Brill. Retrieved 2022, from
https://brill.com/view/journals/beh/156/5-8/article-p479_
4.xml?language=en

[7] Russell, D. A. (n.d.). Hammer nonlinearity,
dynamics and the piano sound. Penn State College of
Engineering. Retrieved 2022, from
https://www.acs.psu.edu/drussell/Piano/Dynamics.html


