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What is Bandwidth Extension (BWE)?

e Guess high frequency content from a low-resolution signal
e Applications

o Telephone systems
o  Old recordings w/ missing high-freq content (music & speech)

Ideal Bandwidth Extension for a sample pop song



Generative Adversarial Networks

e Generator tries to maximize loss, discriminator tries to minimize loss

e More detailed output
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https://www.researchgate.net/figure/Typical-Generative-Adversarial-Networks-GAN-architecture_fig2_349182009




Existing Methods

e Threerecent methods work on music
o Alluse U-Net architecture

e Recently, a HiFi-GAN based approach (BWE Is All You Need) has good results

for speech
o Uses WaveNet-based Generator
architecture for the
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Kim, Sung, and Visvesh Sathe. “Bandwidth Extension on Raw Audio via Generative Adversarial Networks.” arXiv, March
21,2019. http://arxiv.org/abs/1903.09027.




My Method

e Trytoapply the WaveNet architecture (dilated convolution) to BWE
e Mono inputsignal
e Using the time domain (phase is implicit)

e Upsample from 16kHz to 44.1kHz



Methods - Generator
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e Dilated convolution

layers
o similar to WaveNet
architecture
o Non-causal
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https://www.deepmind.com/blog/wavenet-a-generative-model-for-raw-audio



Methods - Discriminators

e Strided convolutions
o Reducesize of input

e Discriminator output is average value of last layer
o Large number if real, small number if fake




Methods - Losses

e Training Discriminators
o Loss ~= Discriminator(fake) + (1 - Discriminator(real))

e Training Generators
o Adversarial loss
m Loss~=(1- Discriminator(fake))
m Spectrogram discriminators
m 3 waveformdiscriminators (1x, 2x, and 4x downsampled)
o L1waveform loss
o L1 spectrogram loss



Objective Results

Was looking at Frechet Audio Distance (FAD), but it’s only trained with 16kHz

data.

Not accurate for perceptual quality

Waveform
Generator Only Discriminators Full Model
Signal-to-Distortion Ratio (SDR) 13.91 dB 15.35 dB 14.87 dB
Signal-to-Noise Ratio (SNR) 8.44 dB 7.45 dB 8.45 dB
Log-Spectral Distortion (LSD) 3.65dB 2.64 dB 2.59 dB




Visual Results: Original Spectrogram




Visual Results: Input

Low Passed
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Visual Results: Generator Only

High-Frequency Creation (Generator Only)
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Visual Results: Waveform Discriminators

High-Frequency Creation (Time-Domain Discriminators)
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Visual Results: Waveform + Spect. Discriminators

High-Frequency Creation (Complete Method)
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Visual Results: Original Spectrogram




Aural Results

Original: »
Input: =
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Waveform Discriminators:



Conclusions/Limitations

e Results are passable, but certainly not wonderful

e Difficult domain, could have used more data
e Memory limitations (greater batch sizes, more layers)



Questions?



