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ABSTRACT 

Bandwidth extension is the process of increasing the band-

width of audio signals: generally, it creates high frequency 

content not previously existent in a signal. It is an im-

portant task in the problems of music restoration and en-

hancement and speech enhancement for low data-rate 

communication media. Among the recent neural methods 

applied to bandwidth extension, general adversarial net-

works (GANs) provide high quality results and a breadth 

of existing techniques and literature. However, the vast 

majority of existing methods are designed to work on 

speech, and the research towards bandwidth extension of 

music is somewhat limited. The methods that are designed 

for music focus on a very specific genre, and do not gen-

eralize well. The proposed method uses techniques from 

recent high-quality GAN models designed for speech to try 

to create a model for music bandwidth extension that gen-

eralizes well to different genres. The results are a good 

start towards general music bandwidth extension, but 

much work could be done to improve these methods to 

compete with state of the art models for speech. 

1. INTRODUCTION 

Audio bandwidth extension (BWE) is the process of in-

creasing the bandwidth of an audio signal. Most of the 

time, this is applied to audio recorded at a low sample rate. 

The sample rate is an upper limit on the frequencies that 

can be represented in an audio recording, so the task is usu-

ally to increase the sample rate and generate the high fre-

quency content previously unavailable. 

BWE is usually split up into two domains: speech and 

music. The most applicable task of BWE of music is to 

improve the quality of old recordings, where the sample 

rate was limited by the recording technology of the time. 

For speech, the most popular task is improving the quality 

of telephone signals, which still work at low sample rates 

for low-resource data transfer. Older telephone networks 

used a sample rate of 3.4kHz, and modern systems use 

8kHz (which is still quite low) [6] [7], making the problem 

of bandwidth extension highly relevant for making speech 

intelligible over the phone. 

Because the task of speech enhancement is a more prac-

tical problem, much more research has gone into band-

width extension of speech than of music. The domain of 

speech is simpler than that of music, which can vary 

widely depending on genre and instrumentation. 

I am interested in the task of enhancing old musical re-

cordings, so I chose to focus on music instead of speech. 

2. RELATED WORK 

Bandwidth extension has been studied for a long time (for 

example, this source-filter model-based method from 1979 

[8]). In the last 15 years, researchers have begun studying 

neural networks for use with this task. Early methods used 

feedforward networks or convolutional neural networks 

(CNNs) [6] [7] [9]. Recently, generative models have 

achieved much improvement in the quality of bandwidth-

extended signals. These models include variational auto-

encoders, generative adversarial networks, flow-based 

models, and diffusion models. Flow and diffusion models 

are the newest approaches, and they seem to produce very 

high-quality results [10] [11]. Because they are so new, 

there is not as much existing work using them, especially 

in the field of bandwidth extension. 

Generative Adversarial Networks (GANs) are another 

type of generative model that produces quality results. 

They have a wide literature of methods and techniques 

built up around them. There are two GAN architectures 

that seem to work very well for speech synthesis tasks: 

WaveNet (WaveNet [12] and later, HiFi-GAN [13]), and 

U-Net [14]. BWE is very similar to speech synthesis, so it 

is not surprising that several papers have adapted these 

methods to BWE, including HiFi-GAN+ [2] and BEHM-

GAN [1]. 

Of the GAN-based methods, the vast majority work on 

speech [2] [6] [7] [8] [9]. I have found three recent papers 

that focus on music [16] (including MU-GAN [15] and 

BEHM-GAN [1]). Two of these restrict their datasets to 

solo classical piano recordings, which is a simpler domain 

to work in. When applied to different genres or instru-

ments, the accuracy of these methods decreases [1] [15]. 

The third method trains on a variety of popular genres, but 

the results have noticeable artifacts [16]. 

Notably, BEHM-GAN is the only paper that has actu-

ally performed BWE on historical recordings. Though the 

domain is limited to solo piano, the results are very high 

quality [1]. 

Interestingly, these three methods all use the U-Net ar-

chitecture. Based on the success of HiFi-GAN [13] for 

speech synthesis and HiFi-GAN+ [2] for BWE, this pro-

posed method follows the WaveNet architecture with the 

goal of performing high quality BWE that generalizes well 

to a variety of genres. 

3. METHODS 

The proposed method takes a mono audio signal sampled 

at 16kHz (with a bandwidth of 8kHz) and increases the 

sample rate to 44.1kHz (with a bandwidth of 22.05kHz). It 



  

 

uses a WaveNet-based time-domain GAN to generate the 

new frequency content between 8kHz and 22.05kHz. 

Generative Adversarial Networks (GANs) use two 

types of neural networks that compete with each other. A 

generator network creates the data; in this case, this is the 

full-bandwidth audio. Often, this is a convolution neural 

network (CNN) that maps the low-bandwidth input to a 

full-bandwidth output. One or multiple discriminator net-

works attempt to determine whether an input is real or cre-

ated by the generator. These are also usually CNNs, though 

with different architecture than that of the generator. The 

two types of networks are trained at the same time: the dis-

criminator tries to guess if its inputs are real or fake, and 

the generator tries to generate data that can fool the dis-

criminator. As one improves its performance, so will the 

other. 

GANs work well for audio synthesis because they gen-

erate highly detailed output. Standard deep-learning mod-

els (CNN, etc.) tend to create audio without much detail – 

resulting in an “oversmoothed” spectrum [2] [1]. The pres-

ence of the discriminators encourages the generator output 

to be more detailed, like the ground truth, to better fool the 

discriminators. 

This method chooses to work in the time-domain in-

stead of the time-frequency domain. This means that in-

stead of the model inputting and outputting a spectrogram, 

it works with raw waveforms. Many BWE methods output 

a magnitude spectrogram, which means they must find a 

way to generate phase to convert the spectrogram back to 

an audio signal. Working directly in the time domain is 

convenient, because the phase information is stored im-

plicitly in the audio samples. 

3.1 Generator Architecture 

The generator’s job is to take low-bandwidth audio as in-

put and to output full-bandwidth audio. Usually, genera-

tors follow the convolution neural network (CNN) archi-

tecture. In a CNN, each layer is connected to a fixed num-

ber (called the kernel size) of consecutive nodes in the pre-

vious layer. In figure 1, the kernel size is 3, so each node 

in the first convolution layer is connected to 3 consecutive 

input samples. Each node in the second layer is connected 

to 3 nodes in the first layer, each of which is connected to 

3 input samples. Thus, in the case of audio, the deeper lay-

ers in the network can model longer temporal relationships 

between samples that aren’t as close to one another (a 

larger “receptive field”). 

 

 
Figure 1. A visualization of convolution from researchgate.net [17]. 

Each node in a layer is connected to a given number of consecutive 
nodes in the previous layer. 

This method is based on the WaveNet generator archi-

tecture, which consists of layers of dilated convolutions 

applied to the waveform. Instead of connecting to consec-

utive nodes, dilated convolution skips nodes in between its 

connections. In figure 2, the second layer has a kernel size 

of 2 and a dilation of 2, which means that it connects to 

every other node in layer 1 (for the length of 2 nodes). This 

allows longer temporal relationships to be modeled with 

the same number layers as with normal convolution. 

 

Figure 2. A visualization of the large “receptive field” of dilated con-

volutions, from the Google WaveNet paper [12]. Normal convolutional 
layers overlap in their windows, but with dilation, the nodes in each 

next layer are connected to an exponentially increasing number of input 

nodes. 
 

The WaveNet diagram in figure 2 is causal, which 

means that an output sample only depends on current and 

past input samples. The proposed method uses non-causal 

convolution, which means that the output sample depends 

on an equal number of past and future input samples. In 

the diagram, this would appear as the architecture mirrored 

to the right of the current sample.  

The proposed method uses 5 layers of dilated convolu-

tion with a kernel size of 3 and dilation increasing by a 

factor of 3. A greater number of layers would allow for a 

greater receptive field but was limited by memory con-

straints. 

3.2 Discriminators 

The discriminator’s job is to try to tell the difference be-

tween ground truth and generated outputs. It is usually 

some form of CNN that outputs a single number: how sure 

it is that the input is real. This could be a probability, but it 

doesn’t have to be. A higher number means the discrimi-

nator is more sure that the input is ground truth. As the 

discriminator gets better at classifying its inputs, its results 

are used to train the generator, so that the generator can 

create outputs that better fool the discriminator. This is 

called adversarial training, because the two networks are 

competing against each other. 

Following cues from HiFi-GAN [13], the discrimina-

tors use multiple strided convolution layers. As with stand-

ard convolution, each node in a strided convolution layer 

connects to a kernel of consecutive nodes in the previous 

layer. In standard convolution, each next node in the con-

volution layer shifts the kernel by one node in the previous 

layer. In strided convolution, each next node in the convo-

lution layer shifts the kernel by multiple nodes in the pre-

vious layer. Figure 3 shows this. The kernel in the first 

layer is shifted by a stride of 2, which results in a 2x2 con-

volution layer. In normal convolution, the next layer would 



  

 

have been 3x3. Strided convolution layers are used to de-

crease the size of layers quickly, which is desired because 

the discriminators need to output one number. 

The last strided convolution layer in each discriminator 

is averaged to output a single number. 

 
Figure 3. A visualization of strided convolution from [18]. The kernel 

for each node in a convolution layer is shifted by more than one node in 
the previous layer. 

 

Recent methods have found that using several discrim-

inators of different scales and domains improve the quality 

of the generated audio and removes different kinds of arti-

facts [1] [2] [13]. These methods use discriminators in both 

the time domain (on the waveform) and the time-frequency 

domain (on the spectrogram). For each domain, there can 

be multiple discriminators at different scales. For the 

waveform, this means discriminators on the output audio, 

as well as progressively down-sampled versions. For the 

spectrogram, this means discriminators on spectrograms 

with different window and hop lengths. These different 

scales encourage the generator to create details at different 

temporal resolutions. 

The proposed method uses a single spectrogram dis-

criminator with a window size of 2048 and a hop size of 

512. It uses three waveform discriminators that work on 

the raw waveform, and 2x and 4x downsampled version of 

the waveform. Downsampling is performed with average 

pooling. More on these discriminators in the results sec-

tion. 

3.3 Loss 

To train neural networks, we try to minimize some loss 

function that attempts to measure the error in the network’s 

output. The smaller the error/loss, the better the results. 

GANs combine several loss functions for better train-

ing. First, the generators use standard loss functions you 

might find in normal CNNs, called feature loss. The pro-

posed method uses the L1 distance between the generated 

and ground truth waveform and spectrogram. Minimizing 

this means the generator’s output will be closer to the 

ground truth. 

The discriminators should output a large number when 

their input is real, and a small number when the input is 

fake. Thus, to train the discriminators, this method uses the 

loss function in equation 1, where D(x) is the output of the 

discriminator given input x. Minimizing the loss will en-

courage small numbers for fake input and large numbers 

for real input. 

𝐷𝐿𝑜𝑠𝑠 = 𝑟𝑒𝑙𝑢(1 + 𝐷(𝑓𝑎𝑘𝑒)) + 𝑟𝑒𝑙𝑢(1 − 𝐷(𝑟𝑒𝑎𝑙))  (1)               

To use the information from the discriminators to affect 

the generation of data, we must include the discriminator 

output somewhere in the generator’s loss function. This is 

called adversarial loss and is shown in equation 2. When 

training the discriminators, we want to improve the quality 

of the discriminator output, so we minimize 1 + D(fake). 

When training the generator, we want to hurt the perfor-

mance of the discriminator, so we include -D(fake). 

 

𝐴𝑑𝑣𝐿𝑜𝑠𝑠 = −𝐷(𝑓𝑎𝑘𝑒) (2) 

 

The generator’s total loss function is the sum of the fea-

ture loss and adversarial loss function. 

3.4 Training 

This method uses the DSD100 dataset, which contains 100 

recordings of music in popular genres [19]. 80 recordings 

are used for training, and 20 recordings are used for vali-

dation/testing. 

It is a common technique with GANs to first train the 

generator on its own with a higher learning rate, and then 

to train with the discriminator losses at a lower learning 

rate [1] [2]. This lets the training quickly get to roughly the 

right place (a smoothed spectrum) and then use the dis-

criminators to encourage the generation of fine details.  

It is also common to run the discriminator training twice 

for each generator output [1] [2]. 

The proposed method trains using a batch size of 3 due 

to memory constraints. It uses the Adam optimizer and 

trains the generator with just feature loss at a learning rate 

of 1e-3 for 189 iterations. It then includes adversarial loss 

and trains at a learning rate of 1e-5 for 255 iterations. 

 

4. RESULTS 

To determine the effect of different parts of the model, test-

ing was performed with three different versions of the 

model: generator only (no discriminators), generator + 

waveform discriminators, and generator + waveform and 

spectrogram discriminators. 

4.1 Measuring Performance 

4.1.1 Perceptual Measures 

The most accurate way to measure the perceptual quality 

of audio synthesis (i.e. does the audio sound “good qual-

ity”, artifact-free, etc. to humans) is to perform listening 

tests. In these tests, participants are asked to blindly rank 

the quality of several audio samples. Among these samples 

are the ground truth recordings, the results of the method 

being tested, and results of several other methods to eval-

uate performance of the proposed method. Any sort of lis-

tening test is beyond the scope of this project, and thus I 

must rely on objective measures to evaluate the perfor-

mance. 



  

 

 

4.1.2 Objective Measures 

There are several classic objective measures that are sim-

ple to calculate and very common in evaluating audio qual-

ity. These are Signal-to-Noise Ratio (SNR), Signal-to-Dis-

tortion Ratio (SDR), and Log-Spectral Distortion (LSD). 

Even though these measures are quite common, it has been 

shown that they are not very representative of perceptual 

quality [1] [2]. The intuition offered is that GANs learn to 

create realistic details in the high frequencies, whether or 

not they exactly match the ground truth content. An over-

smoothed spectrum might be closer to the ground truth and 

thus have better results in the above measures but will 

sound worse to human ears [2]. 

To improve the perceptual quality of objective 

measures, a number of neural-based measures have been 

created that attempt to approximate human judgement [3] 

[4] [5]. Unfortunately, none of them are very appropriate 

for this task. Many of them are designed to evaluate speech 

[5] or have other qualities that make them unsuitable, so 

we are left to rely on the unreliable objective measures. 

Most BWE methods include some combination of 

SNR, SDR, and LSD in their measures, so I measured all 

three of them. 

4.1.3 Measurements 

Table 1 shows the objective results measured for the three 

different versions of the method. These results do not seem 

to consistently improve or worsen. For example, SNR de-

creases when the waveform discriminators are added, but 

then improves again when the spectrogram discriminator 

is added. As a counterexample, SDR increases with the 

waveform discriminators, but decreases with the spectro-

gram discriminator. My takeaway is that these results are 

not very conclusive. 

 

 SNR SDR LSD 

Generator Only 8.44 dB 13.91 dB 3.65 dB 

Waveform Discrimi-

nators 

7.45 dB 15.35 dB 2.64 dB 

All Discriminators 8.45 dB 14.87 dB 2.59 dB 

Table 1. Results of objective measures for the proposed method. 

4.2 Informal Results 

Figure 4 displays the spectrograms of a test example 

passed through each version of the model. With large 

enough figures, one can see the harmonic combs from the 

low frequency spectrum have been extended into the 

higher frequency range. Each progressive addition of dis-

criminators adds more high frequency content that brings 

it closer to the ground truth. 

In listening to the output, the change in high frequency 

content is noticeable. The recordings sound more noticea-

bly more wideband and more “present” than the down-

sampled input. However, when compared to the ground 

truth, the reconstructed audio still sounds much more nar-

row-band. 

Interestingly, I found that even though adding the spec-

trogram discriminator caused spectrogram to look more 

similar to the ground truth, the high frequency content was 

noticeably distorted in a way that it was not when only the 

waveform discriminators were used. This is supported by 

the SDR measurements decreasing with the addition of the 

spectrogram discriminator. I am not sure why this is. 

 

 

a) Ground truth wide-band signal 

 

b) Low-passed input signal  

 

c) Results for the generator only 

 

d) Results for the generator + waveform discriminators 



  

 

  

e) Results for the generator + all discriminators 

Figure 4. Sample test results of the different versions of the models. 

One can see that as discriminators are added, the output becomes closer 

to the ground truth. 

5. CONCLUSIONS 

These results are a decent beginning towards genre-gener-

alized music bandwidth extension. Obviously, a lot of 

work needs to be done to improve the results, as they do 

not measure up to the state-of-the-art methods. There are 

two explanations I have for this. 

First, the domain of “music” is a difficult one to work 

with. It is a lot broader, a lot more varied, than the domains 

of speech or solo piano, which most existing bandwidth 

extension methods work on. Because it is a wider domain, 

training a model to generalize well needs a lot of data, and 

the dataset used had only 100 recordings. With signifi-

cantly more data, I believe generalizability would improve. 

Secondly, training was severely limited by memory 

constraints. With more memory, training could be con-

ducted with larger batch sizes, and the models could have 

more layers, larger receptive fields, etc., all of which 

would hopefully improve results. 

This being said, I am happy with my results, as this is 

my first real foray into the world of machine learning. 

6. REFERENCES 

[1] Moliner, Eloi, and Vesa Välimäki. “BEHM-GAN: 

Bandwidth Extension of Historical Music Using 

Generative Adversarial Networks.” arXiv, June 28, 

2022. http://arxiv.org/abs/2204.06478. 

[2] Su, Jiaqi, Yunyun Wang, Adam Finkelstein, and 

Zeyu Jin. “Bandwidth Extension Is All You Need.” 

In ICASSP 2021 - 2021 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing 

(ICASSP), 696–700. Toronto, ON, Canada: IEEE, 

2021. 

https://doi.org/10.1109/ICASSP39728.2021.941357

5. 

[3] Kilgour, Kevin, Mauricio Zuluaga, Dominik Roblek, 

and Matthew Sharifi. “Fréchet Audio Distance: A 

Metric for Evaluating Music Enhancement Algo-

rithms.” arXiv, January 17, 2019. 

http://arxiv.org/abs/1812.08466. 

[4] Gemmeke, Jort F., Daniel P. W. Ellis, Dylan Freed-

man, Aren Jansen, Wade Lawrence, R. Channing 

Moore, Manoj Plakal, and Marvin Ritter. “Audio Set: 

An Ontology and Human-Labeled Dataset for Audio 

Events.” In 2017 IEEE International Conference on 

Acoustics, Speech and Signal Processing (ICASSP), 

776–80. New Orleans, LA: IEEE, 2017. 

https://doi.org/10.1109/ICASSP.2017.7952261 

[5] Rix, A.W., J.G. Beerends, M.P. Hollier, and A.P. 

Hekstra. “Perceptual Evaluation of Speech Quality 

(PESQ)-a New Method for Speech Quality Assess-

ment of Telephone Networks and Codecs.” In 2001 

IEEE International Conference on Acoustics, Speech, 

and Signal Processing. Proceedings (Cat. 

No.01CH37221), 2:749–52. Salt Lake City, UT, 

USA: IEEE, 2001. 

https://doi.org/10.1109/ICASSP.2001.941023. 

[6] Kuleshov, Volodymyr, S. Zayd Enam, and Stefano 

Ermon. “Audio Super Resolution Using Neural Net-

works.” arXiv, August 2, 2017. 

http://arxiv.org/abs/1708.00853. 

[7] Kontio, Juho, Laura Laaksonen, and Paavo Alku. 

“Neural Network-Based Artificial Bandwidth Ex-

pansion of Speech.” IEEE Transactions on Audio, 

Speech and Language Processing 15, no. 3 (March 

2007): 873–81. 

https://doi.org/10.1109/TASL.2006.885934. 

[8] Makhoul, J., and M. Berouti. “High-Frequency Re-

generation in Speech Coding Systems.” In 

ICASSP ’79. IEEE International Conference on 

Acoustics, Speech, and Signal Processing, 4:428–31. 

Washington, DC, USA: Institute of Electrical and 

Electronics Engineers, 1979. 

https://doi.org/10.1109/ICASSP.1979.1170672. 

[9] Li, Kehuang, Zhen Huang, Yong Xu, and Chin-Hui 

Lee. “DNN-Based Speech Bandwidth Expansion and 

Its Application to Adding High-Frequency Missing 

Features for Automatic Speech Recognition of Nar-

rowband Speech.” In Interspeech 2015, 2578–82. 

ISCA, 2015. https://doi.org/10.21437/Inter-

speech.2015-555. 

[10] Kong, Zhifeng, Wei Ping, Jiaji Huang, Kexin Zhao, 

and Bryan Catanzaro. “DIFFWAVE: A 

VERSATILE DIFFUSION MODEL FOR AUDIO 

SYNTHESIS,” 2021, 17. 

[11] Han, Seungu, and Junhyeok Lee. “NU-Wave 2: A 

General Neural Audio Upsampling Model for Vari-

ous Sampling Rates.” In Interspeech 2022, 4401–5, 

2022. https://doi.org/10.21437/Interspeech.2022-45. 

[12] Oord, Aaron van den, Sander Dieleman, Heiga Zen, 

Karen Simonyan, Oriol Vinyals, Alex Graves, Nal 

Kalchbrenner, Andrew Senior, and Koray Kavuk-

cuoglu. “WaveNet: A Generative Model for Raw Au-

dio.” arXiv, September 19, 2016. 

http://arxiv.org/abs/1609.03499. 

[13] Kong, Jungil, Jaehyeon Kim, and Jaekyoung Bae. 

“HiFi-GAN: Generative Adversarial Networks for 

Efficient and High Fidelity Speech Synthesis.” arXiv, 

October 23, 2020. http://arxiv.org/abs/2010.05646. 

[14] Stoller, Daniel, Sebastian Ewert, and Simon Dixon. 

“Wave-U-Net: A Multi-Scale Neural Network for 



  

 

End-to-End Audio Source Separation.” arXiv, June 8, 

2018. http://arxiv.org/abs/1806.03185. 

[15] Kim, Sung, and Visvesh Sathe. “Bandwidth Exten-

sion on Raw Audio via Generative Adversarial Net-

works.” arXiv, March 21, 2019. 

http://arxiv.org/abs/1903.09027. 

[16] Hu, Shichao, Bin Zhang, Beici Liang, Ethan Zhao, 

and Simon Lui. “Phase-Aware Music Super-Resolu-

tion Using Generative Adversarial Networks.” arXiv, 

October 9, 2020. http://arxiv.org/abs/2010.04506. 

[17]  A Novel Deep Learning Model for the Detection and 

Identification of Rolling Element-Bearing Faults - 

Scientific Figure on ResearchGate. Available from: 

https://www.researchgate.net/figure/Simple-1D-con-

volutional-neural-network-CNN-architecture-with-

two-convolutional-layers_fig1_344229502  

[18] Dumoulin, Vincent, and Francesco Visin. “A Guide 

to Convolution Arithmetic for Deep Learning.” arXiv, 

Janu-ary 11, 2018. http://arxiv.org/abs/1603.07285. 

[19] A. Liutkus et al., ‘The 2016 Signal Separation Eval-

uation Campaign’, in Latent Variable Analysis and 

Signal Separation - 12th International Conference, 

LVA/ICA 2015, Liberec, Czech Republic, August 

25-28, 2015, Proceedings, 2017, pp. 323–332. 


