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ABSTRACT 

Beatboxing is a vocal performance technique in which a 

vocalist imitates percussive and melodic instrument 

sounds. This project aims to synthesize a sampled drum 

track based on a live percussive beatboxing performance 

using Non-Negative Matrix Factorization (NMF) in an 

interactive Python script. Given the spectral dictionary of 

any user’s personal percussive elements, pre-loaded drum 

samples are triggered according to the decomposed 

activation matrix of the performance. The activation 

matrix directly returned from our NMF algorithm resulted 

in inaccurate sample triggering as it was not able to 

reliably separate drum sounds into distinct singular 

elements. To resolve this issue, we devised a system to 

compare local maxima across activation matrix elements. 

This returned activations corresponding to only one 

singular dictionary element and allowed for accurate 

sample triggering. We propose methods and 

considerations for real-time implementation of this 

algorithm. 

1. INTRODUCTION 

Beatboxing can be anything from a personal pastime to a 

live musical artform; a staple of the casual, impromptu 

musical jam or the driving rhythmic force of an a cappella 

performance. From a technical standpoint, beatboxing is 

an increasingly popular contemporary singing style where 

the vocalist imitates percussive drum and pitched musical 

instrument sounds. In this project, we focus specifically on 

the percussive elements of beatboxing and attempt to turn 

this purely vocal art into a digital sample controller using 

traditional source separation techniques. 

Non-Negative Matrix Factorization (NMF) is a 

source separation method in which a spectrogram is 

decomposed into a dictionary matrix (representing the 

spectral pattern of each element) and an activation matrix 

(representing the active time of each element) [1]. Here, an 

input stream of human beatboxing is parsed through an 

NMF algorithm in order to acquire the activation matrix, 

which is then used to synthesize a corresponding audio 

track by triggering preloaded drum samples. This concept 

could prove extremely useful for musicians and producers 

with limited time or resources, facilitating quick form 

musical idea creation in a way that is far more natural, 

intuitive, and inspiring than manual drum programming in 

typical digital audio workstations. 

 In the following sections, we will briefly explain 

NMF and detail the methodology behind designing our 

interactive Python script. We will then discuss our 

experimental results before drawing conclusions on both 

the functionality and the user experience of our working 

solution. Finally, we will discuss the limitations of this 

current solution and considerations for implementing a 

similar system in real-time. 

2. BACKGROUND: NON-NEGATIVE MATRIX 

FACTORIZATION 

Given a matrix of non-negative data—a magnitude 

spectrum in our case, the set of which can be packed as 

columns into a non-negative n ✕ m matrix V, where n is 

the total number of spectra and m is the number of their 

frequencies—NMF is able to summarize the rows of V in 

the rows of an r ✕ m matrix H and the columns of V in the 

columns of an n ✕ r matrix W [2]. This factorization is of 

the form  

𝑉 ≈  𝑊𝐻                                   (1) 

where W is the dictionary matrix showing the spectral 

content of each element, and H is the activation matrix 

showing the temporal activations of the spectral vectors. 

The parameter r sets the rank of the approximation and 

controls the power of summarization. Analytically 

choosing appropriate values for r makes it possible to 

extract the major elements of the structure of V [2].  

 There are multiple ways to measure the 

approximation, notably Euclidean distance and Kullback-

Leibler (KL) divergence. KL divergence was used for the 

purpose of this project, which corresponds to the following 

iterative multiplicative update rules: 

𝑊𝑖𝑎 ←  𝑊𝑖𝑎
(𝑉𝐻𝑇)𝑖𝑎

(𝑊𝐻𝐻𝑇)𝑖𝑎
                         (2) 

𝐻𝑖𝜇 ←  𝐻𝑖𝜇
(𝑊𝑇𝑉)𝑎𝜇

(𝑊𝑇𝑊𝐻)𝑎𝜇
                         (3) 

These update rules preserve the non-negativity of W and 

H and also constrain the columns of W to sum to unity [3]. 

 



  

 

3. METHOD 

3.1 User Interface 

The program is run from a Python script and uses a text 

based, command line user interface. On launch, the script 

first prompts the user to record the three beatboxing sounds 

one at a time that will be used for the template vectors. 

Each time the recording is finished, the user will have the 

opportunity to listen back to the recording and re-record if 

necessary. Although this seems as if it is purely for the 

purpose of a positive user experience, this manual quality 

check by the user actually allows for more accurate results 

from the NMF algorithm later in constructing the output. 

Once all template samples are recorded, the script will 

prompt the user to record a ten (10) second snippet of 

beatboxing, using the sounds that it was trained on. All 

audio throughout the project is recorded using the Pyaudio 

library and then converted from bytes objects to Numpy 

arrays for processing. 

3.2 Dictionary Training 

The user’s recorded drum elements are individually 

processed using NMF to acquire their respective spectral 

dictionary elements. While testing the program, we 

focused on three individual drum sounds: a kick, snare, and 

hihat. The NMF training algorithm uses randomly 

initialized vectors for both the W and H matrices and the 

aforementioned KL divergence multiplicative update 

rules. Since we are only using three sounds in our early 

tests, the NMF algorithm will only use three components. 

 
1All figures in this paper were produced during testing for the purpose of 

presentation. They are not part of the interactive Python script’s output. 

However, due to the nature of the NMF algorithm, 

components have no ordinal priority, making it difficult to 

keep track of which matrix element correlates with which 

components in a non-analytical way. As a result, we run 

each recording through its own individual NMF 

decomposition training process and then manually append 

them together, maintaining order within our program. 

3.3 Activation Matrix of Beatbox Performance 

With the now trained dictionary matrix, the algorithm can 

begin processing the beatboxing sample provided by the 

user. The goal is to retrieve the activation matrix for our 

three components. To achieve this, the NMF algorithm 

takes a randomly initialized H matrix, but uses our 

pretrained dictionary elements to initialize the W matrix. 

Once the processing is complete, we will have a calculated 

activation matrix for each of our components, allowing us 

to begin determining the locations of proper onsets.  

 With the activation matrix attained, a component 

corresponding to each element, we must determine when 

to trigger a preloaded drum sample. Intuition tells us that 

the simplest way to accomplish this would be to use a local 

maxima function with a set threshold to find the peaks of 

each activation matrix. Implementing this, however, 

exposes this simple solution as faulty. As shown in Fig. 11, 

while the local maxima function highlights the peaks in the 

plots, two problems are clear. The first is that an imperfect 

signal can cause quick successive false peak detections one 

after another, creating multiple undesired or false triggers. 

This issue can be solved fairly quickly using the SciPy 

Figure 1: Faulty Activation Matrix 



  

 

library’s ‘find_peaks’ function, which includes a 

parameter to ensure that successive peak detections are 

past a minimum distance threshold [4]. The second 

problem, as we’ll come to see, cannot be solved as easily. 

 

3.4 Cross-Element Maxima Comparison 

As seen in Fig. 2, there are often repeated false detections 

across different components—for example, a single 

performed ‘snare’ may trigger an activation in all three 

activation matrix elements even though it obviously can 

belong to only the snare. To compound this difficulty, the 

peaks across components often do not line up temporally 

in frame space, making it impossible to reliably compare 

these peaks within a singular given frame. While the 

distance parameter solved our previous issue, there is no 

comparable solution that considers multi-dimensional 

arrays such as ours, forcing us to develop a novel 

approach. The program first collapses all detected maxima 

into a single vector and sorts them numerically. For each 

maxima point within this combined vector, the following 

point is examined. If it is within a certain distance 

threshold, the algorithm will then attempt to differentiate 

the correct activation. The amplitudes of both detected 

maxima points are compared. The largest is marked as the 

correct detection, the other is removed, and the algorithm 

continues on. As shown in Fig. 2, the combination of these 

two methods produces an accurate detection of activations, 

giving us one cross-element activation per onset. We go 

through and filter out the false detections from each 

component’s list of maxima and can move on to sample 

triggering. 

3.5 Sample Triggering 

Now that we have an accurate list of maxima detections 

for each component, we can restructure it into a form that 

can be used to trigger samples in temporal space. For each 

component, an array of zeros the length of the number of 

frames is created, and an impulse of 1 is placed at the index 

of the detected maxima. The next step is reconstructing our 

temporal data from this frame data. This, however, is quite 

straightforward, as we don’t need to worry about any 

actual data beyond our 1 sample impulse and can simply 

use zero-padding to interpolate our signal. With our final 

triggering signal calculated, we can go through sample by 

sample, and play the corresponding preloaded drum audio 

files whenever an impulse is detected, giving us our final 

output signal.  

4. EXPERIMENTAL RESULTS 

Running this system with two distinctly different 

beatboxing patterns and vocal styles (one for each of us), 

we were able to analytically determine the aforementioned 

distance thresholds as 18 frames (using a frame length of 

1,024 samples) within an activation matrix element and 10 

frames across elements. In other words, a distance of 18 

frames between local maxima in a component’s activation 

matrix element solved the issue of false peaks, while 

staying within a distance of 10 frames in comparing 

detected maxima accurately solved the issue of one 

recorded sound showing as an activation for multiple 

components. 

 With our devised maxima comparison method, 

we were able to achieve very accurate component specific 

onset detection, as seen in Fig. 3, generated using a simple 

Figure 2: Activation Matrix with Amplitude Comparison 



  

 

beatboxing pattern. These activations—now clearly 

representative of only one sound—were then used to 

trigger corresponding preloaded drum samples and 

compile them into one output waveform, as shown in Fig. 

4. In this case, we made the obvious choice to load a 

recorded kick drum sound for the ‘kick’ user element, a 

recorded snare for the ‘snare’ element, and a recorded 

hihat for the ‘hihat’ element. That being said, the chosen 

samples do not need to be similar to the recordings. As the 

training recordings are simply used to decompose the full 

beatboxing performance into an activation matrix and its 

local maxima, the activations could be used to trigger any 

sample, similar or not. 

 In testing, we regularly attempted to decompose 

each other’s performed beatboxing loop with our own 

recorded individual beatboxing sounds. Notably, this 

nearly always resulted in improper activation detection. 

Although this may sound like a flaw in the design, this 

actually shows promise for future expanded use. Many 

advanced beatboxers perform with a variety of slightly 

varied but similar sounds; for example, they may have 

several low frequencies, quick plosive sounds, typically 

acting as kick drums in different styles. The inaccuracy 

shown in testing each other’s recordings suggests that the 

NMF algorithm would likely be able to accurately detect 

multiple very similar drum sounds. 

5. CONCLUSION 

Although the current offline system is shown to be 

successful with our testing audio and shows promise for 

advanced use, there are a handful of factors that limit its 

effectiveness and real-time potential. Based on our 

experimental results, we have determined that an NMF 

based approach is simply not conducive to a real-time 

environment. Much of our algorithm, mainly the 

amplitude comparison for trigger detection, is based on 

some form of lookahead, which poses issues for online 

implementation. Any sort of lookahead would inherently 

have to introduce some form of latency to our system, 

which is the largest concern for performance. Based on the 

degree of lookahead we found necessary for the algorithm 

to effectively run, ranging between 10 and 20 frames, we 

would expect to see extremely noticeable latency 

introduced, rendering our program undesirable and 

unusable. Even without this issue, the NMF algorithm is 

an iterative process, requiring many iterations and updates 

to properly process the data, something that would 

complicate smooth real-time operation. 

Figure 3: Detected Component Triggers 

Figure 4: Final Output Comparison 



  

 

 The offline performance exceeded our 

expectations considering the novelty of our 

implementation. NMF is primarily a source separation 

algorithm, not a source identification algorithm. This 

provided an interesting challenge as we aimed to 

essentially convert the NMF algorithm’s purpose. For a 

working real-time model, we propose a sequence of source 

identification and onset detection, likely attainable through 

a properly trained neural network and simple spectral onset 

detection.  Considering the novelty of our project, we are 

very pleased with the results and are interested to see what 

more can be accomplished.  
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