

Early Investigations Into Real-Time Beatbox Resynthesis Using

Non-Negative Matrix Factorization

Noah Miller

University of Rochester
nmill15@ece.rochester.edu

Joe Bumpus

University of Rochester
jbumpus2@ur.rochester.edu

ABSTRACT

Beatboxing is a vocal performance technique in which a

vocalist imitates percussive and melodic instrument

sounds. This project aims to synthesize a sampled drum

track based on a live percussive beatboxing performance

using Non-Negative Matrix Factorization (NMF) in an

interactive Python script. Given the spectral dictionary of

any user’s personal percussive elements, pre-loaded drum

samples are triggered according to the decomposed

activation matrix of the performance. The activation

matrix directly returned from our NMF algorithm resulted

in inaccurate sample triggering as it was not able to

reliably separate drum sounds into distinct singular

elements. To resolve this issue, we devised a system to

compare local maxima across activation matrix elements.

This returned activations corresponding to only one

singular dictionary element and allowed for accurate

sample triggering. We propose methods and

considerations for real-time implementation of this

algorithm.

1. INTRODUCTION

Beatboxing can be anything from a personal pastime to a

live musical artform; a staple of the casual, impromptu

musical jam or the driving rhythmic force of an a cappella

performance. From a technical standpoint, beatboxing is

an increasingly popular contemporary singing style where

the vocalist imitates percussive drum and pitched musical

instrument sounds. In this project, we focus specifically on

the percussive elements of beatboxing and attempt to turn

this purely vocal art into a digital sample controller using

traditional source separation techniques.

Non-Negative Matrix Factorization (NMF) is a

source separation method in which a spectrogram is

decomposed into a dictionary matrix (representing the

spectral pattern of each element) and an activation matrix

(representing the active time of each element) [1]. Here, an

input stream of human beatboxing is parsed through an

NMF algorithm in order to acquire the activation matrix,

which is then used to synthesize a corresponding audio

track by triggering preloaded drum samples. This concept

could prove extremely useful for musicians and producers

with limited time or resources, facilitating quick form

musical idea creation in a way that is far more natural,

intuitive, and inspiring than manual drum programming in

typical digital audio workstations.

 In the following sections, we will briefly explain

NMF and detail the methodology behind designing our

interactive Python script. We will then discuss our

experimental results before drawing conclusions on both

the functionality and the user experience of our working

solution. Finally, we will discuss the limitations of this

current solution and considerations for implementing a

similar system in real-time.

2. BACKGROUND: NON-NEGATIVE MATRIX

FACTORIZATION

Given a matrix of non-negative data—a magnitude

spectrum in our case, the set of which can be packed as

columns into a non-negative n ✕ m matrix V, where n is

the total number of spectra and m is the number of their

frequencies—NMF is able to summarize the rows of V in

the rows of an r ✕ m matrix H and the columns of V in the

columns of an n ✕ r matrix W [2]. This factorization is of

the form

𝑉 ≈ 𝑊𝐻 (1)

where W is the dictionary matrix showing the spectral

content of each element, and H is the activation matrix

showing the temporal activations of the spectral vectors.

The parameter r sets the rank of the approximation and

controls the power of summarization. Analytically

choosing appropriate values for r makes it possible to

extract the major elements of the structure of V [2].

 There are multiple ways to measure the

approximation, notably Euclidean distance and Kullback-

Leibler (KL) divergence. KL divergence was used for the

purpose of this project, which corresponds to the following

iterative multiplicative update rules:

𝑊𝑖𝑎 ← 𝑊𝑖𝑎
(𝑉𝐻𝑇)𝑖𝑎

(𝑊𝐻𝐻𝑇)𝑖𝑎
 (2)

𝐻𝑖𝜇 ← 𝐻𝑖𝜇
(𝑊𝑇𝑉)𝑎𝜇

(𝑊𝑇𝑊𝐻)𝑎𝜇
 (3)

These update rules preserve the non-negativity of W and

H and also constrain the columns of W to sum to unity [3].

3. METHOD

3.1 User Interface

The program is run from a Python script and uses a text

based, command line user interface. On launch, the script

first prompts the user to record the three beatboxing sounds

one at a time that will be used for the template vectors.

Each time the recording is finished, the user will have the

opportunity to listen back to the recording and re-record if

necessary. Although this seems as if it is purely for the

purpose of a positive user experience, this manual quality

check by the user actually allows for more accurate results

from the NMF algorithm later in constructing the output.

Once all template samples are recorded, the script will

prompt the user to record a ten (10) second snippet of

beatboxing, using the sounds that it was trained on. All

audio throughout the project is recorded using the Pyaudio

library and then converted from bytes objects to Numpy

arrays for processing.

3.2 Dictionary Training

The user’s recorded drum elements are individually

processed using NMF to acquire their respective spectral

dictionary elements. While testing the program, we

focused on three individual drum sounds: a kick, snare, and

hihat. The NMF training algorithm uses randomly

initialized vectors for both the W and H matrices and the

aforementioned KL divergence multiplicative update

rules. Since we are only using three sounds in our early

tests, the NMF algorithm will only use three components.

1All figures in this paper were produced during testing for the purpose of

presentation. They are not part of the interactive Python script’s output.

However, due to the nature of the NMF algorithm,

components have no ordinal priority, making it difficult to

keep track of which matrix element correlates with which

components in a non-analytical way. As a result, we run

each recording through its own individual NMF

decomposition training process and then manually append

them together, maintaining order within our program.

3.3 Activation Matrix of Beatbox Performance

With the now trained dictionary matrix, the algorithm can

begin processing the beatboxing sample provided by the

user. The goal is to retrieve the activation matrix for our

three components. To achieve this, the NMF algorithm

takes a randomly initialized H matrix, but uses our

pretrained dictionary elements to initialize the W matrix.

Once the processing is complete, we will have a calculated

activation matrix for each of our components, allowing us

to begin determining the locations of proper onsets.

 With the activation matrix attained, a component

corresponding to each element, we must determine when

to trigger a preloaded drum sample. Intuition tells us that

the simplest way to accomplish this would be to use a local

maxima function with a set threshold to find the peaks of

each activation matrix. Implementing this, however,

exposes this simple solution as faulty. As shown in Fig. 11,

while the local maxima function highlights the peaks in the

plots, two problems are clear. The first is that an imperfect

signal can cause quick successive false peak detections one

after another, creating multiple undesired or false triggers.

This issue can be solved fairly quickly using the SciPy

Figure 1: Faulty Activation Matrix

library’s ‘find_peaks’ function, which includes a

parameter to ensure that successive peak detections are

past a minimum distance threshold [4]. The second

problem, as we’ll come to see, cannot be solved as easily.

3.4 Cross-Element Maxima Comparison

As seen in Fig. 2, there are often repeated false detections

across different components—for example, a single

performed ‘snare’ may trigger an activation in all three

activation matrix elements even though it obviously can

belong to only the snare. To compound this difficulty, the

peaks across components often do not line up temporally

in frame space, making it impossible to reliably compare

these peaks within a singular given frame. While the

distance parameter solved our previous issue, there is no

comparable solution that considers multi-dimensional

arrays such as ours, forcing us to develop a novel

approach. The program first collapses all detected maxima

into a single vector and sorts them numerically. For each

maxima point within this combined vector, the following

point is examined. If it is within a certain distance

threshold, the algorithm will then attempt to differentiate

the correct activation. The amplitudes of both detected

maxima points are compared. The largest is marked as the

correct detection, the other is removed, and the algorithm

continues on. As shown in Fig. 2, the combination of these

two methods produces an accurate detection of activations,

giving us one cross-element activation per onset. We go

through and filter out the false detections from each

component’s list of maxima and can move on to sample

triggering.

3.5 Sample Triggering

Now that we have an accurate list of maxima detections

for each component, we can restructure it into a form that

can be used to trigger samples in temporal space. For each

component, an array of zeros the length of the number of

frames is created, and an impulse of 1 is placed at the index

of the detected maxima. The next step is reconstructing our

temporal data from this frame data. This, however, is quite

straightforward, as we don’t need to worry about any

actual data beyond our 1 sample impulse and can simply

use zero-padding to interpolate our signal. With our final

triggering signal calculated, we can go through sample by

sample, and play the corresponding preloaded drum audio

files whenever an impulse is detected, giving us our final

output signal.

4. EXPERIMENTAL RESULTS

Running this system with two distinctly different

beatboxing patterns and vocal styles (one for each of us),

we were able to analytically determine the aforementioned

distance thresholds as 18 frames (using a frame length of

1,024 samples) within an activation matrix element and 10

frames across elements. In other words, a distance of 18

frames between local maxima in a component’s activation

matrix element solved the issue of false peaks, while

staying within a distance of 10 frames in comparing

detected maxima accurately solved the issue of one

recorded sound showing as an activation for multiple

components.

 With our devised maxima comparison method,

we were able to achieve very accurate component specific

onset detection, as seen in Fig. 3, generated using a simple

Figure 2: Activation Matrix with Amplitude Comparison

beatboxing pattern. These activations—now clearly

representative of only one sound—were then used to

trigger corresponding preloaded drum samples and

compile them into one output waveform, as shown in Fig.

4. In this case, we made the obvious choice to load a

recorded kick drum sound for the ‘kick’ user element, a

recorded snare for the ‘snare’ element, and a recorded

hihat for the ‘hihat’ element. That being said, the chosen

samples do not need to be similar to the recordings. As the

training recordings are simply used to decompose the full

beatboxing performance into an activation matrix and its

local maxima, the activations could be used to trigger any

sample, similar or not.

 In testing, we regularly attempted to decompose

each other’s performed beatboxing loop with our own

recorded individual beatboxing sounds. Notably, this

nearly always resulted in improper activation detection.

Although this may sound like a flaw in the design, this

actually shows promise for future expanded use. Many

advanced beatboxers perform with a variety of slightly

varied but similar sounds; for example, they may have

several low frequencies, quick plosive sounds, typically

acting as kick drums in different styles. The inaccuracy

shown in testing each other’s recordings suggests that the

NMF algorithm would likely be able to accurately detect

multiple very similar drum sounds.

5. CONCLUSION

Although the current offline system is shown to be

successful with our testing audio and shows promise for

advanced use, there are a handful of factors that limit its

effectiveness and real-time potential. Based on our

experimental results, we have determined that an NMF

based approach is simply not conducive to a real-time

environment. Much of our algorithm, mainly the

amplitude comparison for trigger detection, is based on

some form of lookahead, which poses issues for online

implementation. Any sort of lookahead would inherently

have to introduce some form of latency to our system,

which is the largest concern for performance. Based on the

degree of lookahead we found necessary for the algorithm

to effectively run, ranging between 10 and 20 frames, we

would expect to see extremely noticeable latency

introduced, rendering our program undesirable and

unusable. Even without this issue, the NMF algorithm is

an iterative process, requiring many iterations and updates

to properly process the data, something that would

complicate smooth real-time operation.

Figure 3: Detected Component Triggers

Figure 4: Final Output Comparison

 The offline performance exceeded our

expectations considering the novelty of our

implementation. NMF is primarily a source separation

algorithm, not a source identification algorithm. This

provided an interesting challenge as we aimed to

essentially convert the NMF algorithm’s purpose. For a

working real-time model, we propose a sequence of source

identification and onset detection, likely attainable through

a properly trained neural network and simple spectral onset

detection. Considering the novelty of our project, we are

very pleased with the results and are interested to see what

more can be accomplished.

6. REFERENCES

[1] C. -Y. Cai, Y. -H. Su and L. Su, "Dual-channel Drum

Separation for Low-cost Drum Recording Using

Non-negative Matrix Factorization," 2021 Asia-

Pacific Signal and Information Processing

Association Annual Summit and Conference

(APSIPA ASC), 2021, pp. 17-22.

[2] P. Smaragdis and J. C. Brown, "Non-negative matrix

factorization for polyphonic music transcription,"

2003 IEEE Workshop on Applications of Signal

Processing to Audio and Acoustics (IEEE Cat.

No.03TH8684), 2003, pp. 177-180, doi:

10.1109/ASPAA.2003.1285860.

[3] Lee, D., Seung, H., “Learning the parts of objects by

non-negative matrix factorization,” Nature 401, 788–

791 (1999). https://doi.org/10.1038/44565.

[4] P. Virtanen et al., ‘SciPy 1.0: Fundamental

Algorithms for Scientific Computing in Python’,

Nature Methods, vol. 17, pp. 261–272, 2020.

https://doi.org/10.1038/44565

