
AUTOMATIC MODAL SHIFTING USING CHROMAGRAMS
AND A CONVOLUTIONAL NEURAL NETWORK

Miller Hickman Alex Mancuso
University of Rochester

mhickman@ur.rochester.edu
University of Rochester

amancus9@ur.rochester.edu

ABSTRACT

While methods of manipulating sound files, such as pitch
shifting, are readily available in several DAWs, changing
the modality of a song is not as accessible of a feature.
We propose a method that will allow the user to
automatically change the modality as well as the key of a
song by simply inputting a sound file and a target mode.
Our implementation was based on an ideal target due to
time constraints and is open for further advancements.

1. INTRODUCTION

Several accessible software applications allow the
manipulation of a song’s features, such as the length or
pitch of the file, but few, if any, allow the user to change
the song’s mode. The mode of a song refers to the
intervals between notes in a scale, as well as the tonality
(major, minor, diminished, etc.) of the chords at that
interval. For all of our musical references, we will be
basing them off of tunings and scales commonplace in
Western music, i.e. music that uses twelve-tone equal
temperament.

On inference, this project will take in separate
audio files for each instrument. Ideally, the user would
not need to input separate tracks for all of the
instruments, but we do not have source separation
methods clean enough to yield usable results. Assuming
the input is a group of stems, the first step involves two
different possible routes based on whether the source is
monophonic or polyphonic, i.e. playing one note or
multiple notes at a time. For monophonic sources, the
pitches just need to be detected and shifted based on the
desired mode. It gets more complicated for polyphonic
instruments since only certain notes in the chord may
need to be shifted. For polyphonic modal shifting, we
used a convolution-based neural network to implicitly
shift the tonality. After changing modes, the audio is pitch
shifted to the desired key.

For the sake of time, we have limited the scope
of chorded instruments to just synthesizer sounds. As it
stands, the only models being trained for tonality shifting
are from major chords to minor chords as well as from
minor chords to diminished. Once those models achieve
desired results, additional models will be trained to shift
between other chord tonalities.

1.1 RELATED WORKS

Modality shifting, and more specifically tonality shifting,
are not tasks that have been addressed at all within the

research community. Thus, inspiration and direction for
how to actually approach these tasks required looking at
other computer audition tasks.

Audio source separation turned out to be a great
direction, as tonality shifting and source separation are
very similar from a high level. Training source separation
models relies on learning a difference in the frequency
content of an audio mixture and an isolated voice or
instrument. Shifting from one tonality to another relies on
learning the difference in the frequency content between
the pitches in those tonalities.

Many different models have been used to train
source separation models, but Convolutional Neural
Networks (CNN) seemed like the most promising
method. As far as CNNs, Wave-U-Net [5] was the most
promising model, which we aimed to emulate.
Wave-U-Net was itself based on the U-Net model for
image segmentation [4]. With some adjustments, our
model for tonality shifting does take heavy inspiration
from the U-Net architecture.

2. DATA

Data collection was a surprisingly difficult task for this
project. There are no sufficient datasets of chords with
multiple tonalities available, which left data generation
up to us. Currently, the dataset used for training consists
of chords generated from PySynth [2], which is a
programmable synth module in Python with six different
timbres. The different timbres are designed to sound like
a flute, piano, electric piano, plucked string instrument,
and bowed string instrument. Pysynth is publicly
available code under the GNU General Purpose License.

Chords were generated with root notes ranging
from midi notes 24 to 80 in major, minor, and diminished
tonalities. Each chord was also generated with a
corresponding version that includes the seventh interval
of it. Ideally, the data set will be expanded to include
more instruments and timbres as well as different effects
applied to the generated chords, which will further
generalize the tonality shifting model.

Other datasets were also considered, like
GuitarSet [3] and others that included chords played on
piano or guitar. However, it seemed that each set had
some aspect that made them not ideal. For example, some
guitar chord sets would have various tonalities played in
the same position of the guitar, but with different
fingering positions that made comparing corresponding
samples impossible.

3. METHODS

This section describes the methods necessary to perform
three main tasks that exist within our implementation:
identifying the input pitches and determining if they are
monophonic or polyphonic, shifting the tonality of
polyphonic chords using a CNN, and shifting the new
version of the song to a different key.

3.1 PITCH AND CHORD IDENTIFICATION

To properly shift the pitches, it is necessary to know the
note name and how it relates to the original mode and the
desired mode. It is also needed for pitch shifting to a new
key if that is desired. For detecting pitches, we used data
from chromagram calculations, which were derived using
a constant Q transform. The algorithm, taken from an
open-source code based on the concepts of Brown and
Puckette’s paper [1], returns twelve values per frame that
represent the strength of each note detected in the
twelve-tone scale regardless of octave. With a
monophonic source, for example, the maximum value
amongst the twelve outputs is the theoretical evaluated
pitch. This is beneficial since it limits the scope of the
notes to the quality of the pitch (note name) rather than
both the quality and its height (octave). The chromagram
also allows for pitch detection of monophonic and
polyphonic inputs, a very important feature for dissecting
chords.

We will refer to the location in which energy is
represented for a note in a chromagram as that note’s
energy bin. If the energy in a bin passes a certain
threshold, it is considered a note that is being played at
that time. This threshold is implemented to distinguish
between notes being played and silence, or ‘blank’
frames. It also provides a way to tell the difference
between monophonic and polyphonic inputs. If multiple
notes pass the threshold, that is considered a chord rather
than a single note. For our testing, we found the best
results using a threshold of 0.032 for the energy in a bin
and using other thresholds for certain sections that were
factors of the energy threshold.

It is possible that multiple pitches will pass the
threshold even when a monophonic source is playing.
Several condition statements were included in the note
detection algorithm to check the behavior of the
surrounding frames and nullify the measurements in the
multi-pitch frame when necessary. It is very possible that
a piano player will play single notes followed by chords
and that not every new musical event will involve the
same amount of notes, so several conditions need to be
put in place to account for different scenarios.

An example of a chromagram measurement is
seen in Figure 1. The audio used in this case was a file of
a distorted guitar recorded in Reaper. The original audio
consists of a single melody of the guitar playing the notes
D-A-D. The file was duplicated twice and pitch-shifted
within Reaper to add in the third and fifth above each
note. This is not a realistic input for a guitar, but this was
used just to show an example and to test if the methods
worked in any capacity.

Figure 1. Output from a distorted guitar playing a 3-chord sequence.
The chords included just the root, the third, and the fifth of the chords.

As seen in Figure 1, the chromagram
implementation is subject to smearing. This means that
the note a half step above the ground truth often also has
a lot of energy, which can lead to pitch detection errors
even with thresholding. Thus, peak detection is
implemented to find the maximum value in a set that lies
above the threshold. Due to misreadings and smearing, it
is possible that the bin above the ground truth is picked as
the note being played, so the lower note is chosen when
two energies are above the threshold and right next to
each other. To distinguish when a note or chord starts and
stops, empty frames are detected as checkpoints and the
number of populated frames between empty frames is
considered the length of that note or chord. Distinct
changes in note streams are also used as checkpoints to
determine chord changes in the case that there is no space
between chords.

In the case of chords, chord names and each of
their chord qualities were stored. The quality of a chord
refers to its tonality (major, minor, or diminished), not to
be confused with the quality of a single pitch. The notes
detected as part of the chord were extracted and run
through a function from the pychord library that allows
chord names to be extracted given their pitches. The
quality of each chord was found using a function from the
music21 library.

3.2 TONALITY SHIFTING

The overall implementation of the tonality shifting model
is based on the U-Net [4] model to perform image
segmentation. The U-Net architecture has also been
implemented with audio to perform source separation in
works like Wave-U-Net [5]. However, instead of
computing the loss between the spectrogram of an audio
mixture and isolated vocal or instrument, the tonality
shifting model compares the spectrograms of chords
between the input and target tonality.

To effectively create a mask that converts one
tonality to another, like major to minor, the intended
conversion lies in isolating the frequencies in the input
chord that shift in the target. For a shift from major to
minor, this would involve generating a mask that reduces
the energy at the major third and major seventh notes,

while introducing the frequencies lying in the minor third
and minor seventh notes, which are each one semitone
down. To effectively train this mask, the only difference
between the input and target chords must be only those
notes. Thus, all pairs of input and target chords share the
same timbre, duration, and octave.

Our method implements the layers as shown in
Figure 2. U-net was originally designed for image
segmentation, so convolution layers are performed in
2-D. To adapt this for audio, the 2-D layers were reduced
to 1-D convolutions.

Figure 2. Diagram describing the layers of the model.

As can be seen in Figure 2, there are three
encoding layers, which reduce the data to a 64 sample
feature vector. Each convolution block actually includes
two separate convolutions and ReLUs. Between each
encoding layer is a max pooling function. Once the data
is reduced, there is a final encoding before upwards
convolution. Decoding the feature vector requires 3
layers of convolution with a layer of upwards convolution
between each one. At each decoding layer, the
corresponding encoding is also concatenated with the
upwards convolved feature vector. This ultimately results
in a spectrogram mask that can then be convolved with
the input to hopefully shift its tonality. While training, the
loss between the estimated chord and the target tonality is
evaluated using mean squared error loss.

The model is only trained with chords of the same root
note, C, across multiple octave ranges to contextualize
and specify the spectrogram mask. If all notes were used
in training, it would likely be impossible to achieve a
reliable and quality output. Thus, on inference, the input
chord will be pitch shifted such that the root note is C,
evaluated and processed with the model to shift its
tonality, then pitch shifted once again to the desired note.

A separate model is trained for each pairwise
combination of tonalities: major to minor, major to
diminished, minor to major, etc.

3.2 PITCH SHIFTING

We used a pitch-shift function from the librosa library to
shift the audio in increments of semitones. It provided
quick pitch-shifting with few artifacts compared to other
sources. The need for pitch shifting comes from the idea
of training the models with chords that are all based

around a root note of C to achieve better performance.
We also wanted to implement the option of shifting the
output afterwards to a brand new key. The most we would
ever need to pitch-shift a song or a chord, assuming
octave does not matter, is six semitones, so we chose
librosa’s pitch-shift function because it can perform quick
pitch-shifting of that magnitude with little added noise.

It is important to note that we purposely did not
implement a pitch shifting algorithm to change the
tonality of chords in the input file. Using a CNN was the
preferred method for this specific case because the task of
separating and resynthesizing the notes of a chord is very
challenging and would likely lead to unsatisfactory
results compared to training a model. However, if
separating and resynthesizing the notes of a chord was a
viable option, it certainly would be easier since pitch
shifting is not a taxing task.

4. RESULTS

4.1 PITCH IDENTIFICATION

Pitch identification was fairly accurate after a couple of
modifications to the code based on [1]. The results in
Figure 3 are from an excerpt that is around 30 seconds
long, providing confidence that this can work for
full-length songs.

For polyphonic sources, the pitch detection was
still accurate. Figure 3 shows a demonstration with an
extended version of the melody from Figure 1 and the
third and fifth above the melody added in. All pitches
were detected correctly for each frame at an arbitrary and
adjusted frame size of 4096 samples. All other parameters
within the chromagram calculation functions were set to
default for the sake of simplicity. From here we can
extract the note names and use a library called pychord to
extract a chord name and a library called music21 to
retrieve the tonality from the given notes so that we know
which model to feed the data to (major to minor, minor to
major, etc.).

Figure 3. Chromagram of an extended version of the guitar melody
from Figure 3, with a third and fifth above the original melody added.

4.2 TONALITY SHIFTING
Preliminary results for the tonality shifting model are
promising, but have not reached our desired goal yet.

With the current training parameters, the model has been
able to achieve a training loss of 0.1512 and validation
loss of 0.1573 after significant training. Though, these
values have reached a plateau and are not improving,
despite additional training for a large amount of time.
Similar values were reached for the model trained to
convert from minor to diminished. Unfortunately, the
model trained to shift from diminished to major was
never able to reach an acceptable quality.

Figure 4. Example output during training. Top to bottom: Mask,
Estimated, Minor, Major. Estimated is Mask convolved with Major,
where Minor is the target. The x-axis is frames and y-axis is frequency
bin.

Figure 4 displays the output from the model
during training. The estimated minor chord, with input of
a major chord, does get pretty close to achieving the
desired spectrogram. However, the actual output on
inference is still not ideal. For the major to minor model,
the output sounds noticeably shifted to the desired
tonality. The model trained to transform minor tonalities
to diminished is not as subjectively clear as the major to
minor model, but it does appear to be quite effective. It
sounds as though the fifth scale degree, the one shifting
between the minor and diminished tonalities, mostly
disappears instead of being shifted. It does have a slight
twinge of the lowered fifth scale degree. The diminished
to major tonality shifting model is extremely poor. It just
produces a large amount of distortion and artifacts.
Clearly the data was not sufficient enough to properly
train a major to diminished model.

These results are not fully satisfactory yet. The
problem lies in data size and diversity. With the resources
available, it was not possible to obtain or generate a
dataset that has a wide breadth of instruments, timbres,
and instances of chords playing. However, the results
give promise that with a more robust dataset, a really high
quality result can be achieved.

5. CONCLUSIONS

We’ve proposed a method for shifting the mode of a song
through the use of a convolutional neural network. Our
work has potential to be successful, but there are certain
limitations we must overcome. The chord identification is
effective, but our chord extraction only works for up to
three different notes in a chord as of now, which is not
ideal for real-world applications. The chord extraction is
also very threshold-dependent, meaning not all audio files
work with the same threshold; some process to normalize
input will likely be required for the method to work
properly. Even with normalizing, the chord extraction in
its current state works extremely well for both chords and
melodies with the guitar data we have but does not
produce promising results for Musescore-generated piano
melodies and chords. Even turning off the built-in reverb
and trying different sounds did not improve the results,
meaning modifications need to be made to account for
different types of input files.

In particular, the tonality shifting model also
needs further development and fine tuning. Some of the
parameters we intend to continue training with include
more frequency bins in the magnitude spectrum, meaning
a larger block and hop size, as well as weighted learning
rates that decay over the course of the training. These
adaptations, along with more time spent training the
model, should increase the models’ ability to learn the
more minute differences between the estimated
spectrogram and the target spectrogram, which should
decrease loss further and improve the overall output.

In the future, we’d like to achieve the ultimate
goal of the user being able to simply input an audio file,
as well as a target key and mode, and have their input be
returned in the new key and mode without an excessive
amount of artifacts. Automatic key detection is an
additional feature that would have to be implemented
along with smoothing audio during reconstruction to
avoid audible ‘pops’ in the output. The model will also
need to be trained with more instruments and timbres of
those instruments to account for various types of input.
Better detection of the start and end of notes would
account for embellishments such as bends in a melody or
a chord, and this could be achieved by linking an onset
detection algorithm to the current methods. A lot of these
propositions were not explored in depth, or at all, due to
time constraints, but our methods prove that there is
considerable belief that automatic modal shifting can
become an accessible feature for audio editing in the
future.

6. REFERENCES

[1] Brown, Judith & Puckette, Miller. (1992). "An
efficient algorithm for the calculation of a constant
Q transform". Journal of the Acoustical Society of
America. 92. 2698. 10.1121/1.404385.

[2] PySynth, “PySynth - a Music Synthesizer for
Python,” https://mdoege.github.io/PySynth/
(accessed Dec. 5, 2022)

[3] Q. Xi, R. Bittner, J. Pauwels, X. Ye, and J. P. Bello,
"Guitarset: A Dataset for Guitar Transcription", in
19th International Society for Music Information
Retrieval Conference, Paris, France, Sept. 2018.

[4] Ronneberger, O., Fischer, P., Brox, T. (2015). U-Net:
Convolutional Networks for Biomedical Image
Segmentation. In: Navab, N., Hornegger, J., Wells,
W., Frangi, A. (eds) Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015.
MICCAI 2015. Lecture Notes in Computer
Science(), vol 9351. Springer, Cham.
https://doi.org/10.1007/978-3-319-24574-4_28

[5] Stoller, Daniel & Ewert, Sebastian & Dixon, Simon.
(2018). Wave-U-Net: A Multi-Scale Neural
Network for End-to-End Audio Source Separation.

http://tomxi.weebly.com/uploads/1/2/1/6/121620128/xi_ismir_2018.pdf

