
 TABLATURE ESTIMATION OF ACOUSTIC GUITAR RECORDINGS WITH
 A CONVOLUTIONAL NEURAL NETWORK

 Seth Roberts
 University of Rochester

 Audio and Music Engineering
 srober35@u.rochester.edu

 ABSTRACT

 Automatic music transcription has been an important
 field of study in recent years. It involves converting an
 audio signal into musical notation. Guitar transcription is
 usually in the form of tablature, a style of notation that
 indicates the position of musical notes on a guitar’s
 fretboard rather than musical pitches. This requires a
 level of expertise not many guitar players have and is
 very time consuming. We attempt to solve this problem
 by automating this task. There are approaches to
 automatic tablature transcription in which it breaks down
 the problem into two steps. The pitch is first estimated
 and then it is converted to tablature fingering. In this
 work, we will be using a convolutional neural network
 (CNN) in order to join these two steps together [1]. This
 approach allows us to map the audio data directly to the
 tablature. Data is used from the GuitarSet dataset and
 used to train, validate, and test our network [2].
 Additionally, we use various metrics in order to evaluate
 the performance of our estimation and discuss relevant
 work within the field of music information retrieval.

 1. INTRODUCTION

 Until recently, the problem of transcribing music audio
 into music notation has relied solely on humans.
 Automatic Music Transcription (AMT) uses
 computational algorithms in order to convert an acoustic
 audio signal into musical notation. This has been
 achieved in a variety of different approaches. Some
 methods use pitch estimation and onset detection, while
 others use artificial intelligence.

 Piano transcription is very popular because there
 is a plethora of data. The recordings for piano are also
 less complex because of the nature of the instrument. On
 a piano, you can only vary the duration and intensity of
 the note and a note can only be played in one location.
 With guitar, the same note can be played in multiple
 places on the fretboard, which makes pitch detection not
 as optimal for transcription. Additionally, strings can be
 played in a variety of different ways. Notes on a guitar
 can be played by bending, sliding, hammering on and off,
 and can be plucked or strummed with your fingers or a
 guitar pick. Because of this, there is a lack of data for
 guitar transcription.

 We develop an approach that employs a CNN in
 order to determine the fingerings of the notes being
 played instead of a pitch estimation. This allows us to
 map guitar tablature from a raw audio signal. The

 GuitarSet dataset provides us with sufficient information
 in order to train, validate, and test our CNN. We use
 Pytorch to implement the proposed model.

 Figure 1. Translation of music notes to tablature. This
 shows notes from low E to high D. A zero in the tablature
 represents an open string being played.

 2. RELATED WORK

 There have been a number of works that address the
 problem of automatic tablature transcription. A chord
 estimation algorithm using pitch detection was used in
 [3]. This approach models the mechanics of the guitar
 with a deep convolutional network. A set of finite chord
 shape templates are used and the neural network is
 trained by minimizing the distance between its output and
 the best template. This system is, however, constrained
 by the chord shape templates that it uses to differentiate
 between input chords.

 Another method that has been explored involves
 using a Hidden Markov Model (HMM) [4]. This model
 measures the strength of different fundamental
 frequencies within each time frame and, based on the
 probabilities of different chord sequences, predicts the
 output using a number of hidden states. This model is
 constrained to only four different chord types: major,
 minor, major 7 th , and minor 7 th .

 The most relevant approach to our model is from
 TabCNN. This approach uses the GuitarSet dataset in
 order to train and test their CNN and uses a variety of
 different metrics in order to evaluate the performance [1].
 However, there is no validation within their model. In our
 implementation we will use different network architecture
 and use a portion of the data for validation to train
 hyper-parameters within the model. Additionally, we use
 a different training optimization algorithm.

 3. DATASET

 The GuitarSet Data set consists of 360 audio excerpts of
 solo acoustic guitar that are around 30 seconds long [2].
 The dataset was created by having six different guitarists

 1

 play the same thirty lead sheets. Each guitarist recorded
 themselves comping chords and then soloing over their
 own comping. There are 5 different styles of lead sheets:
 Rock, Singer-Songwriter, Bossa Nova, Jazz, and Funk.
 These styles vary in chord progression and tempo. These
 excerpts were recorded with both a hexaphonic pickup
 and a Neumann U-87 condenser microphone as reference
 [2]. The audio files can be classified into three groups:
 hexagonal pickup, hexagonal pickup with interference
 removal applied, and monophonic recording from a
 reference microphone. The labels for the excerpts are in
 the form of .jams files. These .jams files contain
 information of pitch contour, MIDI note, beat position,
 and tempo. Additionally, the ground-truth note
 annotations are provided in order to evaluate the quality
 of our transcription.

 4. METHODOLOGY

 4.1 Audio Preprocessing

 In the preprocessing stage, we take in each of the
 monophonic .wav files and downsample from 44,100 Hz,
 what the audio was recorded at, to 22,050 Hz. This allows
 us to use frequencies up to 11,025 Hz, the Nyquist
 frequency [5]. This covers most of the harmonics
 generated by the guitar and reduces the size of the input
 signal for processing. We also normalize the data in order
 to have a uniform amplitude across audio clips. We will
 be training our CNN with spatial data from the files, and
 therefore will convert our raw audio data from the time
 domain into the frequency domain. The most common
 way to do this is with the Short-Time Fourier Transform
 (STFT). The STFT determines the sinusoidal frequency
 and phase content of sections in a signal. It additionally
 spaces frequency bins linearly and has the same window
 length for each frequency. This is undesirable because
 musical notes are spaced apart logarithmically, not
 linearly. In this work, we will use a Constant-Q
 Transform (CQT), in which the frequency scale is
 logarithmic and the ratios of the center frequencies to
 band-width of all bins are equal [6]. This means that there
 are longer windows for lower frequencies and shorter
 windows for higher frequencies,reducing the
 dimensionality of the input signal in our CNN.

 For our CQT, motivated by previous work, we
 use 24 bins per octave, over 8 octaves [6]. This gives us
 192 bins, with 2 bins per semitone. We use a hop size of
 512 samples, at a sampling rate of 22,050 Hz, equating to
 around 43 frames per second. A context window of size 9
 frames is used and is padded on either side to ensure that
 the input data is uniform. This also ensures features are
 preserved that exist at the edges of the matrix. Input
 samples of our CNN are 192 x 9.

 4.2 Labeling Preprocessed

 In order to properly train our CNN we need to have labels
 for each input sample. We will be labeling our data from

 the information in the .jams files that are provided within
 the dataset. We will use the same number of frames that
 are used when calculating the CQT, 43 frames. From
 here, we convert the frames to seconds because the .jams
 labels are in terms of seconds. We then loop over all 6
 strings and replace the given MIDI pitch with the correct
 fret number for each input frame. To do this, we round
 each MIDI number to a whole number, which
 corresponds to the nearest musical pitch, after subtracting
 the corresponding string’s open pitch value. This outputs
 the fret that was activated in order to produce the note.
 There are 21 different fret classes: the 19 frets on the
 guitar plus open string (played with no fret pressed) and
 closed string (not played). This is then converted into a
 label array of size 6 x 21 for each frame.

 Figure 2. Bin number to frequency comparison between
 CQT and STFT. This shows the logarithmic spacing
 between frequency bins for the CQT.

 4.3 Network Architecture

 The neural network structure that we will use is inspired
 by the TabCNN model [1]. Using a CNN, we are able to
 filter the input with convolutional layers and extract
 spectral features. The weights of these filters are learned
 throughout the training process. The CNN concludes with
 two dense layers which create a shallow neural network
 to perform our classification. It receives the output from
 each neuron of its preceding layer in order to predict the
 output.

 The first stage of the proposed network is a
 series of 2 convolutional layers, with sizes 3 x 3 and 5 x 5
 respectfully, with a stride of 1. Our first layer contains 32
 filters and the second layer has 64 filters. Each
 convolution layer is followed by a Rectified Linear Unit
 (ReLU) activation, which performs nonlinear mapping to

 2

 Figure 3. The proposed network architecture. The input is a constant-Q spectrogram of acoustic guitar audio. This is
 input to 2 convolutional layers then a max pooling layer. These layers extract spatial information in order to output a
 tablature estimation. The two dense layers and softmax predict the fret-number labels for each of the 6 strings.

 be learned. It defines the output of a neuron given a set
 of inputs, with an input above zero returning the output
 of the neuron, and an input below zero returnings an
 output of zero.

 The next stage is our max pooling layer. This
 reduces dimensionality of the images, the number of
 parameters, and computational load. We use a max
 pooling layer of size 3 x 3 and stride of 1. This extracts
 the highest, or most activated, value from the 3 x 3
 portion of the image we are looking at. This is then
 flattened to one dimension to be input into our first
 dense layer. After our first dense layer, of size 128,
 ReLU activation is applied. This is then input to our
 second dense layer of size 126, and reshaped to 6 x 21,
 which corresponds to the 6 different strings and 21
 different fret classes. Finally, a softmax activation is
 performed. This activation converts values into
 probabilities such that all values in the list sum to 1. It
 learns to output the probability of each fret class for
 each string.

 4.4 Training

 For our training model, we use the ADAM optimization
 algorithm [7]. This model works by adapting the
 parameter learning rates based on the average first and
 second moment’s gradients using an exponential
 moving average and correcting its bias. Using a learning
 rate of 0.1 and mini-batch size of 128, we train for 4
 epochs. Based on previous work [1], overfitting
 occurred when training for longer. To combat
 overfitting, we use a dropout rate of 0.25 after the max
 pooling layer and the first dense layer. We use a portion
 of the dataset for validation in order to do some
 hyper-parameter optimization that previous work did
 not implement.

 With our output being a representation of a
 fretboard, we now design a loss function so our
 machine can learn to reproduce it. Because we are
 dealing with a multi-label classification for each of the
 6 strings, it is

 best to use cross-entropy as a loss function. The
 proposed loss function is described as follows:

 In this loss function, N represents the total number of
 labels to be predicted. This function is used because it
 enables us to measure the loss between the predicted
 and ground truth vectors with multiple labels [8]. Once
 we calculate the cross-entropy for each string, they are
 summed in order to produce our final result.

 5. RESULTS

 The results did not produce data that was sufficient
 enough to conclude that this proposed architecture
 works better than that of TabCNN. During training of
 the model, the loss was decreasing through each epoch.
 However, during the validation process, the loss was
 increasing. This means that the model was overfitting to
 the training data. Due to the time constraints of the
 project, we did not have time to fine tune the
 hyperparameters of the architecture in order to fix this
 overfitting issue. In the future, the learning rate,
 optimizer, and context window size will be adjusted in
 order to resolve this problem.

 6. CONCLUSION

 In this paper, we propose a convolutional neural
 network for estimating guitar tablature. This network
 converts audio of solo acoustic guitar into musical
 notation. Although this model did experience
 over-fitting issues, we believe that it will be able to
 produce results similar to that of TabCNN once this
 issue is resolved. We hope that in the future we can use
 this as a framework for transcription of other musical
 notations as well, not just tablature.

 3

 7. REFERENCES

 [1] Andrew Wiggins and Youngmoo Kim. Guitar
 tablature estimation with a convolutional neural
 network. In ISMIR, 2019.

 [2] Q. Xi, R. Bittner, J. Pauwels, X. Ye, and J. P.
 Bello. Guitarset: A Dataset for Guitar
 Transcription. in 19th International Society for
 Music Information Retrieval Conference, Paris,
 France, Sept. 2018.

 [3] Ana M Barbancho, Anssi Klapuri, Lorenzo J
 Tardon, and Isabel Barbancho. Automatic
 transcription of guitar chords and fingering from
 audio. IEEE Transactions on Audio, Speech, and
 Language Processing, 20(3):915–921, 2011.

 [4] Chang, W., A. W. Su, C. Yeh, A. Roebel, and X.
 Rodet. 2008. Multiple-F0 tracking based on a high
 order HMM model. In Proceedings of the
 International Conference on Digital Audio Effects,
 Espoo, Finland.

 [5] Yoonchang Han, Jaehun Kim, Kyogu Lee,
 Yoonchang Han, Jaehun Kim, and Kyogu Lee.
 Deep convolutional neural networks for
 predominant instrument recognition in polyphonic
 music. IEEE/ACM Transactions on Audio, Speech
 and Language Processing (TASLP),
 25(1):208–221, 2017.

 [6] A. Klapuri, C. Schorkhuber, Constant-Q
 Transform Toolbox For Music Processing.
 University of London, 2010.

 [7] Eric J Humphrey and Juan P Bello. From music
 audio to chord tablature: Teaching deep
 convolutional networks to play guitar. In 2014
 IEEE international conference on acoustics,
 speech and signal processing (ICASSP), pages
 6974–6978. IEEE, 2014.

 [8] J. Sleep, Automatic Music Transcription With
 Convolutional Neural Networks Using Intuitive
 Filter Shapes, California Polytechnic State
 University, October 2017.

 4

