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 ABSTRACT 

 Automatic  music  transcription  has  been  an  important 
 field  of  study  in  recent  years.  It  involves  converting  an 
 audio  signal  into  musical  notation.  Guitar  transcription  is 
 usually  in  the  form  of  tablature,  a  style  of  notation  that 
 indicates  the  position  of  musical  notes  on  a  guitar’s 
 fretboard  rather  than  musical  pitches.  This  requires  a 
 level  of  expertise  not  many  guitar  players  have  and  is 
 very  time  consuming.  We  attempt  to  solve  this  problem 
 by  automating  this  task.  There  are  approaches  to 
 automatic  tablature  transcription  in  which  it  breaks  down 
 the  problem  into  two  steps.  The  pitch  is  first  estimated 
 and  then  it  is  converted  to  tablature  fingering.  In  this 
 work,  we  will  be  using  a  convolutional  neural  network 
 (CNN)  in  order  to  join  these  two  steps  together  [1].  This 
 approach  allows  us  to  map  the  audio  data  directly  to  the 
 tablature.  Data  is  used  from  the  GuitarSet  dataset  and 
 used  to  train,  validate,  and  test  our  network  [2]. 
 Additionally,  we  use  various  metrics  in  order  to  evaluate 
 the  performance  of  our  estimation  and  discuss  relevant 
 work within the field of music information retrieval. 

 1.  INTRODUCTION 

 Until  recently,  the  problem  of  transcribing  music  audio 
 into  music  notation  has  relied  solely  on  humans. 
 Automatic  Music  Transcription  (AMT)  uses 
 computational  algorithms  in  order  to  convert  an  acoustic 
 audio  signal  into  musical  notation.  This  has  been 
 achieved  in  a  variety  of  different  approaches.  Some 
 methods  use  pitch  estimation  and  onset  detection,  while 
 others use artificial intelligence. 

 Piano  transcription  is  very  popular  because  there 
 is  a  plethora  of  data.  The  recordings  for  piano  are  also 
 less  complex  because  of  the  nature  of  the  instrument.  On 
 a  piano,  you  can  only  vary  the  duration  and  intensity  of 
 the  note  and  a  note  can  only  be  played  in  one  location. 
 With  guitar,  the  same  note  can  be  played  in  multiple 
 places  on  the  fretboard,  which  makes  pitch  detection  not 
 as  optimal  for  transcription.  Additionally,  strings  can  be 
 played  in  a  variety  of  different  ways.  Notes  on  a  guitar 
 can  be  played  by  bending,  sliding,  hammering  on  and  off, 
 and  can  be  plucked  or  strummed  with  your  fingers  or  a 
 guitar  pick.  Because  of  this,  there  is  a  lack  of  data  for 
 guitar transcription. 

 We  develop  an  approach  that  employs  a  CNN  in 
 order  to  determine  the  fingerings  of  the  notes  being 
 played  instead  of  a  pitch  estimation.  This  allows  us  to 
 map  guitar  tablature  from  a  raw  audio  signal.  The 

 GuitarSet  dataset  provides  us  with  sufficient  information 
 in  order  to  train,  validate,  and  test  our  CNN.  We  use 
 Pytorch to implement the proposed model. 

 Figure  1.  Translation  of  music  notes  to  tablature.  This 
 shows  notes  from  low  E  to  high  D.  A  zero  in  the  tablature 
 represents an open string being played. 

 2.  RELATED WORK 

 There  have  been  a  number  of  works  that  address  the 
 problem  of  automatic  tablature  transcription.  A  chord 
 estimation  algorithm  using  pitch  detection  was  used  in 
 [3].  This  approach  models  the  mechanics  of  the  guitar 
 with  a  deep  convolutional  network.  A  set  of  finite  chord 
 shape  templates  are  used  and  the  neural  network  is 
 trained  by  minimizing  the  distance  between  its  output  and 
 the  best  template.  This  system  is,  however,  constrained 
 by  the  chord  shape  templates  that  it  uses  to  differentiate 
 between input chords. 

 Another  method  that  has  been  explored  involves 
 using  a  Hidden  Markov  Model  (HMM)  [4].  This  model 
 measures  the  strength  of  different  fundamental 
 frequencies  within  each  time  frame  and,  based  on  the 
 probabilities  of  different  chord  sequences,  predicts  the 
 output  using  a  number  of  hidden  states.  This  model  is 
 constrained  to  only  four  different  chord  types:  major, 
 minor, major 7  th  , and minor 7  th  . 

 The  most  relevant  approach  to  our  model  is  from 
 TabCNN.  This  approach  uses  the  GuitarSet  dataset  in 
 order  to  train  and  test  their  CNN  and  uses  a  variety  of 
 different  metrics  in  order  to  evaluate  the  performance  [1]. 
 However,  there  is  no  validation  within  their  model.  In  our 
 implementation  we  will  use  different  network  architecture 
 and  use  a  portion  of  the  data  for  validation  to  train 
 hyper-parameters  within  the  model.  Additionally,  we  use 
 a different training optimization algorithm. 

 3.  DATASET 

 The  GuitarSet  Data  set  consists  of  360  audio  excerpts  of 
 solo  acoustic  guitar  that  are  around  30  seconds  long  [2]. 
 The  dataset  was  created  by  having  six  different  guitarists 
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 play  the  same  thirty  lead  sheets.  Each  guitarist  recorded 
 themselves  comping  chords  and  then  soloing  over  their 
 own  comping.  There  are  5  different  styles  of  lead  sheets: 
 Rock,  Singer-Songwriter,  Bossa  Nova,  Jazz,  and  Funk. 
 These  styles  vary  in  chord  progression  and  tempo.  These 
 excerpts  were  recorded  with  both  a  hexaphonic  pickup 
 and  a  Neumann  U-87  condenser  microphone  as  reference 
 [2].  The  audio  files  can  be  classified  into  three  groups: 
 hexagonal  pickup,  hexagonal  pickup  with  interference 
 removal  applied,  and  monophonic  recording  from  a 
 reference  microphone.  The  labels  for  the  excerpts  are  in 
 the  form  of  .jams  files.  These  .jams  files  contain 
 information  of  pitch  contour,  MIDI  note,  beat  position, 
 and  tempo.  Additionally,  the  ground-truth  note 
 annotations  are  provided  in  order  to  evaluate  the  quality 
 of our transcription. 

 4.  METHODOLOGY 

 4.1  Audio Preprocessing 

 In  the  preprocessing  stage,  we  take  in  each  of  the 
 monophonic  .wav  files  and  downsample  from  44,100  Hz, 
 what  the  audio  was  recorded  at,  to  22,050  Hz.  This  allows 
 us  to  use  frequencies  up  to  11,025  Hz,  the  Nyquist 
 frequency  [5].  This  covers  most  of  the  harmonics 
 generated  by  the  guitar  and  reduces  the  size  of  the  input 
 signal  for  processing.  We  also  normalize  the  data  in  order 
 to  have  a  uniform  amplitude  across  audio  clips.  We  will 
 be  training  our  CNN  with  spatial  data  from  the  files,  and 
 therefore  will  convert  our  raw  audio  data  from  the  time 
 domain  into  the  frequency  domain.  The  most  common 
 way  to  do  this  is  with  the  Short-Time  Fourier  Transform 
 (STFT).  The  STFT  determines  the  sinusoidal  frequency 
 and  phase  content  of  sections  in  a  signal.  It  additionally 
 spaces  frequency  bins  linearly  and  has  the  same  window 
 length  for  each  frequency.  This  is  undesirable  because 
 musical  notes  are  spaced  apart  logarithmically,  not 
 linearly.  In  this  work,  we  will  use  a  Constant-Q 
 Transform  (CQT),  in  which  the  frequency  scale  is 
 logarithmic  and  the  ratios  of  the  center  frequencies  to 
 band-width  of  all  bins  are  equal  [6].  This  means  that  there 
 are  longer  windows  for  lower  frequencies  and  shorter 
 windows  for  higher  frequencies,reducing  the 
 dimensionality of the input signal in our CNN. 

 For  our  CQT,  motivated  by  previous  work,  we 
 use  24  bins  per  octave,  over  8  octaves  [6].  This  gives  us 
 192  bins,  with  2  bins  per  semitone.  We  use  a  hop  size  of 
 512  samples,  at  a  sampling  rate  of  22,050  Hz,  equating  to 
 around  43  frames  per  second.  A  context  window  of  size  9 
 frames  is  used  and  is  padded  on  either  side  to  ensure  that 
 the  input  data  is  uniform.  This  also  ensures  features  are 
 preserved  that  exist  at  the  edges  of  the  matrix.  Input 
 samples of our CNN are 192 x 9. 

 4.2  Labeling Preprocessed 

 In  order  to  properly  train  our  CNN  we  need  to  have  labels 
 for  each  input  sample.  We  will  be  labeling  our  data  from 

 the  information  in  the  .jams  files  that  are  provided  within 
 the  dataset.  We  will  use  the  same  number  of  frames  that 
 are  used  when  calculating  the  CQT,  43  frames.  From 
 here,  we  convert  the  frames  to  seconds  because  the  .jams 
 labels  are  in  terms  of  seconds.  We  then  loop  over  all  6 
 strings  and  replace  the  given  MIDI  pitch  with  the  correct 
 fret  number  for  each  input  frame.  To  do  this,  we  round 
 each  MIDI  number  to  a  whole  number,  which 
 corresponds  to  the  nearest  musical  pitch,  after  subtracting 
 the  corresponding  string’s  open  pitch  value.  This  outputs 
 the  fret  that  was  activated  in  order  to  produce  the  note. 
 There  are  21  different  fret  classes:  the  19  frets  on  the 
 guitar  plus  open  string  (played  with  no  fret  pressed)  and 
 closed  string  (not  played).  This  is  then  converted  into  a 
 label array of size  6 x 21 for each frame. 

 Figure  2.  Bin  number  to  frequency  comparison  between 
 CQT  and  STFT.  This  shows  the  logarithmic  spacing 
 between frequency bins for the CQT. 

 4.3  Network Architecture 

 The  neural  network  structure  that  we  will  use  is  inspired 
 by  the  TabCNN  model  [1].  Using  a  CNN,  we  are  able  to 
 filter  the  input  with  convolutional  layers  and  extract 
 spectral  features.  The  weights  of  these  filters  are  learned 
 throughout  the  training  process.  The  CNN  concludes  with 
 two  dense  layers  which  create  a  shallow  neural  network 
 to  perform  our  classification.  It  receives  the  output  from 
 each  neuron  of  its  preceding  layer  in  order  to  predict  the 
 output. 

 The  first  stage  of  the  proposed  network  is  a 
 series  of  2  convolutional  layers,  with  sizes  3  x  3  and  5  x  5 
 respectfully,  with  a  stride  of  1.  Our  first  layer  contains  32 
 filters  and  the  second  layer  has  64  filters.  Each 
 convolution  layer  is  followed  by  a  Rectified  Linear  Unit 
 (ReLU) activation, which performs nonlinear mapping to 
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 Figure  3.  The  proposed  network  architecture.  The  input  is  a  constant-Q  spectrogram  of  acoustic  guitar  audio.  This  is 
 input  to  2  convolutional  layers  then  a  max  pooling  layer.  These  layers  extract  spatial  information  in  order  to  output  a 
 tablature estimation. The two dense layers and softmax predict the fret-number labels for each of the 6 strings. 

 be  learned.  It  defines  the  output  of  a  neuron  given  a  set 
 of  inputs,  with  an  input  above  zero  returning  the  output 
 of  the  neuron,  and  an  input  below  zero  returnings  an 
 output of zero. 

 The  next  stage  is  our  max  pooling  layer.  This 
 reduces  dimensionality  of  the  images,  the  number  of 
 parameters,  and  computational  load.  We  use  a  max 
 pooling  layer  of  size  3  x  3  and  stride  of  1.  This  extracts 
 the  highest,  or  most  activated,  value  from  the  3  x  3 
 portion  of  the  image  we  are  looking  at.  This  is  then 
 flattened  to  one  dimension  to  be  input  into  our  first 
 dense  layer.  After  our  first  dense  layer,  of  size  128, 
 ReLU  activation  is  applied.  This  is  then  input  to  our 
 second  dense  layer  of  size  126,  and  reshaped  to  6  x  21, 
 which  corresponds  to  the  6  different  strings  and  21 
 different  fret  classes.  Finally,  a  softmax  activation  is 
 performed.  This  activation  converts  values  into 
 probabilities  such  that  all  values  in  the  list  sum  to  1.  It 
 learns  to  output  the  probability  of  each  fret  class  for 
 each string. 

 4.4  Training 

 For  our  training  model,  we  use  the  ADAM  optimization 
 algorithm  [7].  This  model  works  by  adapting  the 
 parameter  learning  rates  based  on  the  average  first  and 
 second  moment’s  gradients  using  an  exponential 
 moving  average  and  correcting  its  bias.  Using  a  learning 
 rate  of  0.1  and  mini-batch  size  of  128,  we  train  for  4 
 epochs.  Based  on  previous  work  [1],  overfitting 
 occurred  when  training  for  longer.  To  combat 
 overfitting,  we  use  a  dropout  rate  of  0.25  after  the  max 
 pooling  layer  and  the  first  dense  layer.  We  use  a  portion 
 of  the  dataset  for  validation  in  order  to  do  some 
 hyper-parameter  optimization  that  previous  work  did 
 not implement. 

 With  our  output  being  a  representation  of  a 
 fretboard,  we  now  design  a  loss  function  so  our 
 machine  can  learn  to  reproduce  it.  Because  we  are 
 dealing  with  a  multi-label  classification  for  each  of  the 
 6 strings, it is 

 best  to  use  cross-entropy  as  a  loss  function.  The 
 proposed loss function is described as follows: 

 In  this  loss  function,  N  represents  the  total  number  of 
 labels  to  be  predicted.  This  function  is  used  because  it 
 enables  us  to  measure  the  loss  between  the  predicted 
 and  ground  truth  vectors  with  multiple  labels  [8].  Once 
 we  calculate  the  cross-entropy  for  each  string,  they  are 
 summed in order to produce our final result. 

 5.  RESULTS 

 The  results  did  not  produce  data  that  was  sufficient 
 enough  to  conclude  that  this  proposed  architecture 
 works  better  than  that  of  TabCNN.  During  training  of 
 the  model,  the  loss  was  decreasing  through  each  epoch. 
 However,  during  the  validation  process,  the  loss  was 
 increasing.  This  means  that  the  model  was  overfitting  to 
 the  training  data.  Due  to  the  time  constraints  of  the 
 project,  we  did  not  have  time  to  fine  tune  the 
 hyperparameters  of  the  architecture  in  order  to  fix  this 
 overfitting  issue.  In  the  future,  the  learning  rate, 
 optimizer,  and  context  window  size  will  be  adjusted  in 
 order to resolve this problem. 

 6.  CONCLUSION 

 In  this  paper,  we  propose  a  convolutional  neural 
 network  for  estimating  guitar  tablature.  This  network 
 converts  audio  of  solo  acoustic  guitar  into  musical 
 notation.  Although  this  model  did  experience 
 over-fitting  issues,  we  believe  that  it  will  be  able  to 
 produce  results  similar  to  that  of  TabCNN  once  this 
 issue  is  resolved.  We  hope  that  in  the  future  we  can  use 
 this  as  a  framework  for  transcription  of  other  musical 
 notations as well, not just tablature. 
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