
AN INTERACTIVE COMPUTATIONAL SYSTEM TO
ACCOMPANY JAZZ IMPROVISATION

Yiyang Wang Joseph Jaeger
University of Rochester

ywang418@ur.rochester.edu
University of Rochester

jjaeger5@ur.rochester.edu

ABSTRACT

In this paper, we present an interactive music system
where a human soloist performs with a computer agent
that provides accompaniment. Currently, the system can
generate chords based on both the soloist’s melodic
material and the computer agent’s accompaniment. This
allows for the creation of an interactive accompaniment
system. While automatic accompaniment algorithms have
existed for quite some time, most of these algorithms are
designed to provide accompaniment to a predetermined
melody and have no interactivity. There are a few music
generation models that integrate melody and chord
accompaniment, but most of these systems are not
designed to function in real-time. In jazz, improvisation is
a crucial element. Many “backing tracks” exist on
YouTube and other websites where a pre-recorded drum
beat, piano chords, and walking bassline are provided.
Musicians can then use these backing tracks to practice
improvising solos. However, these pre-recorded backing
tracks obviously cannot interact with the musician, so the
experience is very different from soloing over live
accompaniment. Our interactive music system allows a
jazz musician to practice improvisation with
accompaniment that reacts to their playing and would
provide a more realistic and enjoyable experience than a
pre-recorded backing track.

1. INTRODUCTION

Improvisation is one of the core elements of jazz. As a
soloist improvises a melody, the rhythm section
improvises accompaniment. The soloist and rhythm
section listen and react to each other, creating a highly
interactive musical experience. While improvising, jazz
musicians may reference a “lead sheet” that outlines the
musical structure and chord progression, but it is common
for musicians to make alterations ad lib, especially during
solos. Both the soloist and accompaniment must actively
listen and react to each other during the performance.

Given the significance of improvisation in jazz,
several computational improvisation systems have been
developed. Many of these systems aim to create an
artificial soloing partner [1- 4]. However, in this project,
we aim to create an interactive automatic accompaniment
system that reacts to a human soloist and to the
previously generated accompaniment. Many existing
methods for automatic accompaniment are based on
Hidden Markov Models (HMMs) [5, 6], deep learning
methods [7], or a combination of these methods [8].

Although Markov models are conceptually simple and
can learn from sparse training data, deep neural networks
(DNNs) can capture high-order dependencies and may be
more suitable for considering long-term temporal
structures [9]. In [10], two long short-term memory
(LSTM) networks are used to generate polyphonic music.
One LSTM predicts the chord progression based on a
“chord embedding.” The other LSTM uses the predicted
chord progression to generate polyphonic music. In [11],
Chu et al. create a hierarchical system that comprises
three levels. In each level, a Recurrent Neural Network
(RNN) generates a component of the song. The bottom
level of the system generates a monophonic melody, and
the higher levels create the accompanying chords and
drum part. However, neither [10] nor [11] are designed to
generate accompaniment in real-time and do not interact
with a human musician.

In our project, we use RNN to create an interactive
music system. The system predicts chords based on the
human player’s improvised performance and the previous
chords generated by the system, and uses the prediction
to generate an accompaniment pattern for the human
performer. The system is non-discriminative of
performance scenarios and can provide accompaniment
to a solo whistler and a full ensemble alike. This system
can be a great tool for jazz musicians to practice
improvisation and may be especially useful to beginners.

Figure 1. The interactive jazz improvisation
accompaniment system. The top half of the figure roughly
represents the physical environment (including the
interface) while the lower half the virtual data collection
and inference process inside the system. Solid-line arrows
point in directions of data flow; dotted-line arrows are
visual and audio cues provided to the human performer.

2. METHOD

2.1 The Agent

To make the agent interact with the human performer
(simplified as the performer in the remaining part of the
paper) in real time, the interactive improvisation
accompaniment agent has an audio input to take in the
live performance (which includes the agent’s generated
output as well) , an audio output for the agent’s generated
accompaniment, and a graphical user interface to report
the status of the system to the performer (Figure 2). User
controlled parameters (Settings and Instruments in the
GUI) can be set at any time. Once a session starts, the
agent generates a rhythmic accompaniment based on the
continuous chord predictions. The harmonic content of
the accompaniment and the visual cue of the chords will
offer an agenda for the performer to interact with, while
the groovy rhythm of the accompaniment as well as the
visual beat cue shall guide the performer to stay in tempo.

The algorithmically generated accompaniment has
three instrument groups that the performer can choose
independently. The piano part plays the block chords read
from the prediction with a controlled rhythmic scheme of
a simple first-order markov chain and stochastically
assigned dynamics. The drum part, including kick, snare
and two variants of hi-hat, loops over a 4-measure
randomly generated pattern. The walking bass line tones
are randomly chosen from the chord prediction with a
pick-up note offset. Depending on which instrument the
performer plays, these accompanying instruments can be
freely combined to mimic a more realistic soloing
scenario.

Figure 2. The current graphical user interface of the
online improvisation accompaniment system, made in
Max8.

Despite some degree of flexibility with certain
parameters to be set by the performer, our system
imposes quite a few fixed musical parameters. It assumes
that a chord stays unchanged for a full measure, and that
each measure has four beats. It also assumes one single
tonic key throughout a session and accommodates only
modulations to closely-related keys that are present in the

existing jazz repertoire1. Since the system is expected to
generate accompaniment in the style of jazz, we consider
the above limitations by-and-large conforming with the
general stylistic features we aim to match.

One benefit of imposing the said limitations is that we
can use the key information from the user to transpose the
input and output to conform with our single-keyed model,
in which all training data are transposed to C. Another
huge benefit is that the scheme simplifies the scheduling
and data collection-transportation process greatly. Since
the tempo is set, we collect the audio input into a buffer
and obtain audio slices by the duration of a measure. The
chromagram for each audio slice is computed and stored
in sequence, as is the sequence of the output (prediction)
chords with the matching indices. Thereby, we are able to
utilize the ordered sequential data of the past, in both time
and symbolic domain, for the prediction of the next
chord. To counteract the latency and offer in-time chord
prediction cues for the user, we only take the first 2 beats
of the current measure along with the full chromagram
data of previous (N-1) measures to predict the next chord,
thus trading off a certain degree of accuracy of the
prediction for the promptness and capability of the
system.

Figure 3. The architecture of the progression RNN.

2.2 Progression RNN

We use recurrent neural networks (RNN) to train a
model that predicts the next chord given an
audio-extracted chromagram sequence of a jazz recording
and the chord labels of the corresponding chord
progression. For the inputs, 1) the audio chromagram is
sliced such that each chromagram is extracted from the
audio portion corresponding to one chord label, and are
padded and stacked in order to make a batch that
represents the sequence of progression, while 2) the input
of the chord sequence is represented as a matrix formed
by columns of 12-dimensional multi-hot pitch-class
vectors.

For the audio chromagram sequence, the first input of
the RNN, each chromagram slice is first fed into a LSTM
layer to output the extracted features of each chord-sliced
chromagram, resulting in one set of features per duration
of chord. Then the sequence of these chord-bounded
features are fed into another LSTM layer to output the
audio correlated features of the chord sequence.

1 To be more precise, the system can offer more reliable predictions of
modulations to closely-related keys present in the repertoire of early
jazz standards, as dictated by the scope of our dataset (Figure 4)

Meanwhile, the sequence of chord labels go through a
two-layer LSTM networks without inner dimensional
reduction, and the output features of the two concurrent
components are concatenated and reduced through a fully
connected linear layer to generate a 12-dimensional
vector that represents the probabilities for individual pitch
classes to be present in the next chord (Figure 3).

After we obtain the probabilities for 12 pitch classes,
we compute the cross entropy loss between the output
and the probability distribution of the binary chroma
representation of chords in our dictionary, and choose the
chord that has the lowest loss to be our final prediction
and report back to the user. During training, we simply
compute the cross entropy loss between the prediction
output and the target chord.

3. EXPERIMENTS

3.1 Dataset

To train our model, we used the Jazz Audio-Aligned
Harmony (JAAH) Dataset2 [12]. This dataset contains 113
jazz standards and provides structure, key, chord, beat
annotations, as well as extracted NNLS chroma features
for each song that were used for the chromagram
component of the training inputs.

Figure 4. Distribution of recordings by year from
JAAH’s Github documentation.

From the 113 songs, we exclude six entries with chord
annotations failed to parse and one entry that does not
have a standard key label, resulting in 106 valid entries in
total. 80 songs are used in training and 26 left for
validation and testing.

3.2 Training

Based on the assumption that chord progression is
invariant with keys, we transpose our training data to the
same key for the sake of data augmentation, which is
quite easy to achieve given both input and output of our
RNN model are chroma-like. For the issue of resolving
modal differences, we separate out minor-moded songs
from major-mode songs to test for training results based
on different grouping strategies, namely 1) train models

2 https://mtg.github.io/JAAH/

with major and minor-moded data separately, 2) train one
model with modes reduced by parallel relations, and 3)
train one model with modes reduced by relative relations.
The models trained with only one mode showed lowest
loss and thus were used in our live demo. However, it is
to be further tested how the models with different training
schemes perform.

During training, we use four chords to predict the next
chord, and thus have N=4 for the architecture shown in
Figure 3. The same configuration is used for testing and
inner data processing of our online system. The choice is
arbitrary and the performance of different configurations
could be further tested. For the sake of data augmentation
and perturbation, we have four random modes for each
iteration of the training, namely 1) feeding both inputs, 2)
replacing chromagram sequence input with zeros (and
then L1 normalized), 3) replacing chord sequence input
with zeros, and 4) skipping the iteration altogether, thus
exposing our model to scenarios with partial null inputs
and thus increase its fault tolerance.

3.3 Agent Specification

While our model is trained with PyTorch, we use
Max/MSP to control the Audio I/O, scheduling, and to
provide a GUI for the performer, with data transported
back and forth via Open Sound Control protocol. Chroma
features are extracted in Max using FluCoMa toolkit with
½ hopsized 2048 frame FFT and L1 normalization. The
chroma features are collected and sent to the running
Python script via OSC for every beat, with additional
time-controlled cues sent for reorganizing chromagram
data and making predictions.

4. EVALUATION

It is intrinsically hard to evaluate the performance of a
generative model since the fitness and error are hard to
judge objectively and statistically. Despite that, several
observations are made by the authors regarding the
performance of the current version of the accompanying
agent.

First, our system usually generates coherent chord
progressions that correspond to common jazz idioms. Our
system makes frequent use of the ii-V-I progression and
circle of fifth motion in general. In fact, if we did not
implement a rule to prohibit it, the system would
continuously play ii-V-I in the selected key with no
human co-improvisor to guide it elsewhere. This is a
consequence of the 4-bar window that we used to predict
the next chord during training. Since we only considered
the previous 4 bars, the model has no knowledge of the
fact that jazz chord progressions typically involve many
chords and would not continuously cycle through the
same three chords. Additionally, the system will
occasionally utilize tritone substitutions, but interestingly,
we never observed a tritone substitution going to the I
chord; tritone substitutions always seemed to tonicize a
related key.

While the overall root motions were conventional, the
system’s choice of chord quality was sometimes

https://mtg.github.io/JAAH/

unorthodox, but largely unoffensive. The system made far
more frequent use of modal mixture than was present in
the training data, tended to over-use minor-major 7
chords, and may have under-used dominant chords.

Due to the limitations on the scope and timeline of the
project, we conducted a feedback survey for a 30-minute
live demo following the ECE477 course project
presentation where we invited attendees to bring
instruments and improvise with our system. Some of the
musicians who used our system were experienced
improvisers and were impressed with the level of
interactivity provided by our system.

Despite the positive feedback from the live demo,
perhaps due to the relative sparsity of the training data,
the cross entropy loss reported back during the training
and validation does not show a significant drop with
tweekings of hyper-parameters and more training epochs.
It is to be tested in our future work on how to judge the
performance of the model statistically.

5. CONCLUSIONS

In its current state, our system generates chords to
accompany human musicians in real-time and provides a
basic drum beat and walking bassline. In addition, we
provide a GUI that displays current and upcoming chord
information and allows the user to control several
parameters governing the performance. Although it is
difficult to objectively assess the performance of our
system, those who have used the system agree that the
experience is interactive and that the chord generation
follows common jazz idioms with only a few minor
quirks. To improve the chord generation, we can train
separate models for major and minor modes and can seek
additional training data, especially for more modern
songs. To improve the interactivity and expressiveness of
our system, we can integrate models to determine the
rhythm of the chords, i.e., the comping pattern, and the
dynamics. Nonetheless, our system provides a powerful
tool to practice improvisation in its current state.

6. REFERENCES

[1] J. Biles, “GenJam: A Genetic Algorithm for
Generating Jazz Solos,” in International Conference
on Mathematics and Computing, 1994.

[2] B. Thom, “Unsupervised Learning and Interactive
Jazz/Blues Improvisation,” in Proceedings of the
Seventeenth National Conference on Artificial
Intelligence and Twelfth Conference on Innovative
Applications of Artificial Intelligence, pp. 652–657,
July 2000.

[3] G. Hoffman and G. Weinberg, “Shimon: an
interactive improvisational robotic marimba player,”
in CHI '10 Extended Abstracts on Human Factors in
Computing Systems, pp. 3097–3102, 2010.

[4] N. Trieu and R. M. Keller, “JazzGAN: Improvising
with generative adversarial networks,” in 6th
international workshop on musical metacreation
(MUME 2018), June 2018.

[5] I. Simon et al., "MySong: automatic accompaniment
generation for vocal melodies," in Proceedings of
the SIGCHI conference on human factors in
computing systems, pp. 725-734. 2008.

[6] N. Ding,. "Research and Design of Automatic Piano
Accompaniment System Based on Sound Database,"
in International Conference on Forthcoming
Networks and Sustainability in the IoT Era, pp.
121-127, 2022.

[7] K. Kritsis et al., "On the Adaptability of Recurrent
Neural Networks for Real-Time Jazz Improvisation
Accompaniment." in Frontiers in artificial
intelligence, vol 3, article 508727, 2021.

[8] T. Hori et al., "Jazz piano trio synthesizing system
based on HMM and DNN," in Proceedings of the
14th sound and music computing conference, pp.
5-8, 2017.

[9] J. Briot et al. Deep learning techniques for music
generation, New York, NY: Springer International
Publishing, 2019.

[10] G. Brunner et al., "JamBot: Music theory aware
chord based generation of polyphonic music with
LSTMs," in IEEE 29th International Conference on
Tools with Artificial Intelligence (ICTAI), pp.
519-526, 2017.

[11] K. Choi et al., "Text-based LSTM networks for
automatic music composition,” in 1st Conference on
Computer Simulation of Musical Creativity, 2016.

[12] V. Eremenko et al., “Audio-Aligned Jazz Harmony
Dataset for Automatic Chord Transcription and
Corpus-based Research,” in International Society
for Music Information Retrieval Conference, 2018.

