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Deepfake cause issues

Attackers use popular
Text-to-speech (TTS) and
Voice conversion (VC) toolboxes,

like ESPnet and Coqui,

which implements a lot of popular
TTS and VC algorithms.

Reference Our Result



http://www.youtube.com/watch?v=gLoI9hAX9dw

Deepfake anti-spoofing systems

Image Deepfake Detection Systems
Detect artifacts in computer-generated image

Speech Anti-spoofing Systems (or countermeasures, CM)
Detect artifacts in computer-generated speech




The generalization problem

We train on some attacks Hope it can also spot out other unseen attacks




The generalization problem Attacker used Coqui-TTS

Attacker used ESPnet
AEB 2 —_— Attack 4
Attack 1 Attack 3
Attacker used ESPnet The anti-spoofing model can easily tell that attack 3 is fake,
Attacker used ESPnet But can’t easily tell attack 4 is fake.

It overfitted on ESPnet-specific artifacts.



Training Setup

Used AASIST - the SOTA speech anti-spoofing model. (EER = 0.83% on ASVspoof2019LA)

Trained on... Validated on...

ESPnet attack

FastSpeech2 TTS + Mel-GAN ) X )
Fastpitch + Griffin-Lim
Coqui attack

YourTTS



Training Setup
Then evaluate both

ESPnet-trained

Coqui-trained

on

ESPnet-attack
VITS

Coqui-attack
VITS



The problem does exist

ESPnet trained

Coqui trained

Framework EER
ESPnet-TTS 0.86%
Coqui-TTS 32.97%
Framework EER
ESPnet-TTS 14.14%
Coqui-TTS 2.87%

Performs better on ESPnet

Performs better on Coqui



How do we mitigate it?

D) D) D) 0
Inaudible noise Convolved with Highpass Biquad
(0.1% amplitude) reverb cutoff at 6 kHz

Q=0.707



How do we mitigate it?

Noise
- Destroy amplitude slightly, destroy phase
- Spectrais preserved

Reverb
- Destroy amplitude and phase massively
- Spectrais not preserved

Filter
- Destroy amplitude, preserve some phase
- Spectrais somewhat preserved



Metrics

Performance: How well is the anti-spoofing model in telling fake speech apart from real ones?
- AverageEER (Avg.)

- (ESPnet_attack_EER + Coqui_attack_EER) /2

Overfitting: Does the anti-spoofing model still exhibit overfitting behavior?
- Absolute Difference in EER (Diff.)

- abs(ESPnet_attack_EER - Coqui_attack_EER)



Noise works

ESPnet trained

Coqui trained

Perb. Framework EER Avg. Diff.

None ESPnet-TTS 0.86% 16.92% |32.11%
Coqui-TTS 32.97%

Noise ESPnet-TTS 1.76% 3.70% |3.87%
Coqui-TTS 5.63%

None ESPnet-TTS 14.14% |8.51% 11.27%
Coqui-TTS 2.87%

Noise ESPnet-TTS 1.47% 3.64% |4.33%
Coqui-TTS 5.80%




Reverb doesn’t work

ESPnet trained

Coqui trained

Perb. Framework EER Avg. Diff.

None ESPnet-TTS 0.86% 16.92% |32.11%
Coqui-TTS 32.97%

Reverb ESPnet-TTS 6.72% 20.62% | 27.80%
Coqui-TTS 34.52%

None ESPnet-TTS 14.14% |8.51% 11.27%
Coqui-TTS 2.87%

Reverb | ESPnet-TTS 20.78% [11.69% | 18.19%
Coqui-TTS 4.10%




Highpass works

ESPnet trained

Coqui trained

Perb. Framework EER Avg. Diff.

None ESPnet-TTS 0.86% 16.92% |32.11%
Coqui-TTS 32.97%

Filter ESPnet-TTS 13.50% 15.90% | 4.79%
Coqui-TTS 18.29%

None ESPnet-TTS 14.14% |8.51% 11.27%
Coqui-TTS 2.87%

Filter ESPnet-TTS 13.17% 10.40% | 5.54%
Coqui-TTS 7.63%




Noise works, Reverb doesn't work, Filter works. Why?

It's possible that...
- Spectra should be preserved
- Frequency with artifacts should be distorted
- Phase should be destroyed



Which frequencies are rich with artifacts?
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Future work

- Further investigation of the frequency artifacts and phase artifacts
- Bandpass to see which frequency band is most rich with artifacts
- Representation learning to make the speech anti-spoofing model immune to
model-specific artifacts
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