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ABSTRACT 

Deepfake attacks in speech has attack-specific artifacts, 
sometimes known as "fingerprints," which may cause 
speech anti-spoofing models to overfit to attacks trained 
with a particular dataset, learning rate, or training frame-
work. In this study, I examine this issue using a novel, 
large-scale dataset of parallel data based on the VCTK 
corpus and pre-trained models from ESPnet-TTS and 
Coqui-TTS. I established the presence of this overfitting 
issue and evaluated the effectiveness of typical data per-
turbation strategies for mitigating it. I discovered that in-
troducing a small quantity of white noise significantly 
mitigated this impact. This is the first study to evaluate 
the impact of attack-specific artifacts on anti-spoofing 
models and to provide mitigating techniques, which is the 
main contribution of this paper. 

1. INTRODUCTION 

Deepfake technology is a growing concern in both the 
audio and visual fields since it might be used for imper-
sonation attacks by criminals. In response, deepfake de-
tection systems, also known as anti-spoofing systems, are 
designed to assess whether a certain utterance is made by 
a human or an algorithm. Anti-spoofing systems must be 
able to generalize across diverse, unknown circumstances 
by learning the characteristics that will be shared by fu-
ture spoofing attempts, not simply those specific to the 
limited training data. 

However, it has been discovered that certain deepfake 
attacks contain unique artifacts. This is particularly well-
studied in the image domain [4, 8, 13, 14, 15], and it has 
been demonstrated to be resistant to common image per-
turbation techniques [4]. Studies indicate that such arti-
facts also exist in the audio domain [2] and is sensitive to 
even the smallest differences in data split, seed initializa-
tion, and learning rate [9]. 

In this study, I discovered that attack-specific artifacts 
mislead anti-spoofing models to overfit to the training 
data, hence compromising their capacity to generalize to 
unknown attacks. I perform experiments using the state-
of-the-art speech anti-spoofing model AASIST [1] to 
evaluate this effect and suggest mitigation strategies. The 
primary contributions of this paper are: 

l Providing a novel dataset consisting of samples 
from many state-of-the-art deepfake attacks. 

l Demonstrating how attack-specific artifacts im-
pact the capacity of speech anti-spoofing models 
to generalize. 

l Proving that adding noise can mitigate the issue 
and improve generalization capability.  

2. EXPERIMENT DESIGN 

2.1 Attack Systems 

Text-to-speech (TTS) and voice-conversion (VC) are the 
most common speech deepfake attack methods. TTS sys-
tems, as the name suggests, synthesize speech from input 
text. Architecture wise, most TTS systems consisted of an 
acoustic model and a vocoder: the acoustic model takes 
text as input, and outputs a spectrogram; the vocoder syn-
thesizes audio waveform from the spectrogram. In recent 
years, researchers are also looking into end-to-end ap-
proaches, which directly outputs audio waveform.  

Although most systems require ample training data on 
a speaker to generate spoof, recent progress has been 
made in combining TTS and VC techniques, enabling 
few-shot TTS. As an example, YourTTS [18] only re-
quires less than 1 minute of speech to fine-tune the model 
for good similarity and quality results. All types of sys-
tem would consist of a vocoder process, whether implicit 
or explicit; previous literature has suggested neural-
network-based vocoder process to introduce significant 
attack-specific artifacts. 

In this study, I look at all three system types: acoustic 
model + vocoder, end-to-end and TTS + VC. I construct-
ed a dataset with state-of-the-art attacks as shown in Ta-
ble 1. I used the VCTK corpus [7] as the bona-fide da-
taset and selected in total of 107 speakers. Since the cor-
pus was designed to be phoneme balanced, I kept all ut-
terances for all speakers. For many utterances, two mi-
crophone signals are provided, labeled mic1 and mic2; I 
used both. All utterances are down-sampled to 16 kHz 
and converted to 16-bits WAV files for consistency. 

To generate utterances with different attack-specific 
artifacts, I used pre-trained embeddings from two major 
TTS/VC frameworks: ESPnet2-TTS [10] and Coqui-TTS 
[6]. Since the same data split is shared within the frame-
work, I anticipate them to have shared attack-artifacts. In 



  
 
the interest of saving training time, I randomly sampled 
audio utterances from each speaker and each attack. See 
detailed data list and full dataset, which are submitted to-
gether with this paper. 

 
Attack System Type Framework 
FastSpeech2 +  
Multiband MelGAN 
[12] 

AM+VOC ESPnet2-TTS 

VITS [5] E2E ESPnet2-TTS 
YourTTS TTS+VC Coqui-TTS 
VITS E2E Coqui-TTS 
Fastpitch +  
Griffin-Lim [11] 

AM+VOC Coqui-TTS 

Table 1. Attack systems. Acoustic model + vocoder is 
labeled as AM+VOC, end-to-end is labeled as E2E. 

2.2 Anti-spoofing Model 

Equal Error Rate (EER) is the most used metric in meas-
uring performance of speech anti-spoofing systems [16]. 
Lower EER indicates better performance. I used the state-
of-the-art anti-spoofing system AASIST to conduct ex-
periments, which reports 0.83% EER on the 
ASVspoof2019LA dataset [3], one of the largest and 
most used datasets in the speech anti-spoofing field [16].  

To form a unified batch, I randomly select a 5-second 
consecutive audio snippet from the utterance if the audio 
is longer, pad the audio repeatedly until it reaches 5 sec-
onds if the audio is shorter.  

2.3 Training 

The anti-spoofing system is trained on the FastSpeech2 + 
Multiband MelGAN attack from ESPnet2-TTS and the 
YourTTS attack from Coqui-TTS in two separate trial 
settings. FastPitch + Griffin-Lim is chosen as the valida-
tion set for both situations, since Griffin-Lim is not a neu-
ral-network-based vocoder and could therefore serve as a 
middle ground in terms of attack-specific artifacts. 

To prevent overfitting the model by overtraining it, I 
trained for 50 epochs and evaluated using the checkpoint 
with the lowest EER on the validation set. With a batch 
size of 36, all training is performed on a single NVIDIA 
GeForce RTX 3090 GPU. Training script, along with all 
necessary configuration files, are submitted together with 
this paper. 

2.4 Data Perturbation 

To mitigate the overfitting problem, I examine several 
commonly found data perturbation techniques as listed 
below. 

No perturbation. No alteration is done to the audio 
samples. All audio signals are normalized before sending 
into the anti-spoofing model. 

Adding white noise. A 0.1% amplitude of white noise 
(0.0001 on a -1 to 1 scale) is applied to the audio signal. 
The audio signal is then normalized. 

Convolving with reverb. All signals are convolved 
using the "Small Drum Room" impulse response from the 
Voxengo Reverb Impulse Responses collection [13]. Af-
ter adding reverb, the audio signal is then normalized. 

Filtering with a high-pass filter. Motivated by previ-
ous literature that found higher frequencies to have a 
higher concentration of artifacts [17], a high pass biquad 
filter is applied to all audio signals, with the cutoff fre-
quency at 6000 Hz, and Q-value at 0.707. The audio is 
then normalized.  

Examples of these perturbations can be found in the 
GitHub repository; to better visualize the results, spectro-
grams for all four scenarios are generated, as depicted in 
Figure 1. There’s no clear difference between Noise and 
Original scenarios since the added noise is barely audible 
for human beings to hear and is not strong enough to 
form a visually distinctive difference on the spectrogram. 

 

 

 

Figure 1. Spectrograms of original and modified utter-
ances; using bona-fide utterance p333_023_mic1 as ex-
ample. Spectrograms are extracted with 1024-point FFT.  



  
 

3. EXPERIMENT SETUP AND RESULTS 

For evaluation purposes, I computed the EER on both 
ESPnet2-TTS and Coqui-TTS produced VITS attacks. I 
calculate the average EER and the absolute EER differ-
ence between these two attacks. Less overfitting to at-
tack-specific artifacts would be indicated by a lower dif-
ference in EER; a lower EER average would indicate bet-
ter generalization ability. Since the anti-spoofing model 
randomly collects 5-second snippets, three evaluation re-
sults are averaged for each EER measurement. No data 
perturbation is present during evaluation. The outcomes 
are depicted in Table 2 and Table 3. 

 
Perb. Framework EER Avg. Diff. 
None ESPnet-TTS 0.86% 16.92% 32.11% 

Coqui-TTS 32.97% 
Noise ESPnet-TTS 1.76% 3.70% 3.87% 

Coqui-TTS 5.63% 
Reverb ESPnet-TTS 6.72% 20.62% 27.80% 

Coqui-TTS 34.52% 
Filter ESPnet-TTS 13.50% 15.90% 4.79% 

Coqui-TTS 18.29% 

Table 2. Evaluation results from model trained on 
ESPnet2-TTS attack. 

Perb. Framework EER Avg. Diff. 
None ESPnet-TTS 14.14% 8.51% 11.27% 

Coqui-TTS 2.87% 
Noise ESPnet-TTS 1.47% 3.64% 4.33% 

Coqui-TTS 5.80% 
Reverb ESPnet-TTS 20.78% 11.69% 18.19% 

Coqui-TTS 4.10% 
Filter ESPnet-TTS 13.17% 10.40% 5.54% 

Coqui-TTS 7.63% 

Table 3. Evaluation results from model trained on Coqui-
TTS attack. 

4. DISCUSSIONS 

To better understand the revelation behind these perturba-
tion scenarios, I selected the following pairs of perturba-
tion scenarios for closer examination:  

Non-perturbated scenarios. When only comparing 
the scenarios without any perturbation, it becomes clear 
that ESPnet-TTS trained model performs much better 
against ESPnet-TTS attack, whereas Coqui-TTS trained 
model performs significantly better against Coqui-TTS 
attack. This indicates that attack-specific artifacts can 
lead an anti-spoofing model to overfit and perform poorly 
on unknown data. 

Noise-added versus non-perturbated. They reveal 
significant improvements in the model's ability to gener-
alize, as indicated by the significantly lower average EER 
for both attacks on both models. The absolute difference 
in EER is also much smaller, indicating that the attack-

specific artifacts are mitigated by the addition of white 
noise. 

Reverb-added versus non-perturbated. Convolving 
with room impulse response decreases generalization 
ability, which could be explained by how reverb drasti-
cally impacted the overall spectra of audio. However, it 
seems that the attack-specific artifacts may not be miti-
gated in all scenarios. 

Filter-added versus non-perturbated. A smaller dif-
ference in EER can be noticed in both scenarios, indicat-
ing that a high-frequency filter can help mitigate the addi-
tion of white noise. The average EER is roughly on the 
same level compared to the non-perturbated ones in both 
scenarios as well, showing no clear performance differ-
ence. 

Noise-added versus Filter-added. These two sets of 
scenarios have relatively similar difference in EER, but 
the performance of noise-added scenarios is much better. 
This may be due to the noise-added samples preserving 
more information, while the filtered utterances are lack-
ing in low-frequency information, which is rich in 
speech-related information. 

 

Figure 3. Average frequency energy curve from bona-
fide, VITS (Coqui-TTS generated, labeled as vits-coqui) 
and VITS (ESPnet-TTS generated, labeled as vits-
espnet). Discarding non-speech frames using a naïve 
voice activity detection algorithm based on energy per 
frame. Red boxes denote areas where three frequency 
energy curves differ. 

A further investigation with the average frequency en-
ergy curve for each attack shows the average energy dif-
ferent in different frequency domain. As we could see 
from Figure 2, although many differences do concentrate 
on higher frequency ranges, there are some differences in 
middle and low frequencies. This led to the hypothesis 
that anti-spoofing models rely on these artifacts to tell 
attacks apart, and by filtering out low frequencies, the 
model has less artifacts to identify, leading to worse 
overall performance. At the same time, since there’s less 
model-specific artifacts as well, the anti-spoofing model 
is less likely to overfit. 

5. CONCLUSIONS 

This paper illustrates the influence of attack-specific arti-
facts on speech anti-spoofing systems through the crea-
tion of a novel, large-scale dataset. In addition, I demon-



  
 
strate that by introducing a little amount of white noise, 
both the overfitting to model problem and the anti-
spoofing model's capacity to generalize can be signifi-
cantly mitigated and enhanced, respectively. Future work 
will involve the employment of new techniques to anti-
spoofing models, such as representation learning, that are 
more independent towards specific model artifacts. 
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