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ABSTRACT 1 

Guitarists often look to other guitarists for new tones and 2 

sounds to use. We propose a method to identify various 3 

guitar effects and replicate them via inputting a recording 4 

with effects and applying that to a dry recording to produce 5 

that effect without knowing the parameters. This is done 6 

using features extracted from a signal with effect with non-7 

negative matrix factorization to compare to a known da-8 

taset. 9 

1. INTRODUCTION 10 

Guitarists often hope to replicate other guitarist’s tones. 11 

Whether this is through using the same pedals, same amps, 12 

same guitar, or same plugins, these are usually quite ex-13 

pensive and do not necessarily include what settings they 14 

use. We propose a method to identify and reverse engineer 15 

guitar effects from a single source to apply to other guitar 16 

recordings. This includes time-based effects as well as tim-17 

bre-based effects.  18 

There have been several different methods that attempt 19 

to do this individually, like dynamic convolution using im-20 

pulse responses [1], neural networks [2], or virtual analog 21 

representations [3], but this paper proposes various unique 22 

and novel methods to accomplish this task. These are all 23 

based on the features retrieved with non-negative matrix 24 

factorization (NMF) [4]. This paper proposes ways to iden-25 

tify and replicate delay, tremolo, and reverb effects given 26 

a wet signal with one effect applied. We also reviewed 27 

methods for timbre-based effects for further work. 28 

2. BACKGROUND 29 

NMF is a method used to decompose a V matrix into two 30 

matrices, W and H [4]. In terms of audio, after applying a 31 

short time Fourier transform (STFT), we can extract vari-32 

ous characteristics of the sound. The H matrix for instance 33 

is the activation matrix which shows note onsets. The W 34 

matrix has the spectral characteristics of said activations. 35 

To retrieve these W and H matrices, they can either be con-36 

stantly changed or saved. In this case, for time-based ef-37 

fects, we save the H matrix of an initial training set. This 38 

set was of various clean (dry) guitar recordings. Useful in-39 

formation can also be extracted with the NMF of signals 40 

with effects on them (wet) for identification. These were 41 

recorded with direct input using a Focusrite Scarlet audio 42 

interface. For time-based effects, this was based on taking 43 

the Fast Fourier Transform (FFT) of the activation matrix 44 

for both identification and in some case, finding the prop-45 

erties of the effects we hope to retrieve. We also hoped to 46 

accomplish a method to retrieve a distortion and/or overall 47 

timbre from a different recording and apply it to a dry sig-48 

nal. The program asks for a wet signal that one would like 49 

to identify, a clean signal to apply it to, datasets for dry and 50 

wet effects. There are choices for pretrained data, or new 51 

data if one would like to use their own. 52 

3. DATASET 53 

The dataset we used consisted of two main parts: the base-54 

line dataset, and the effects dataset. The effects dataset 55 

consists of guitar audio with various effects applied, in var-56 

ious amounts including, reverb, delay, tremolo, and some 57 

with no effects, all of which were monophonic music. This 58 

dataset was used for training the identification weights as 59 

well as for initial testing. For any training for the NMF, we 60 

used 100 iterations and r value of 25. 61 

On the other side, the baseline dataset can be broken 62 

down into two components, the frequency and time fo-63 

cused audio. For the frequency focused audio, we used re-64 

cordings of a clean guitar playing every possible note on 65 

the guitar. This consisted of 49 notes ranging from an E2 66 

to an E6, corresponding to a 24-fret guitar’s range in stand-67 

ard tuning. This audio was run through an NMF algorithm 68 

and used to create a Frequency Dictionary matrix (W) 69 

which represents the frequency content of a typical clean 70 

guitar. To aid with accuracy, each column of the initial W 71 

matrix consists of 0’s below the 49 fundamental frequen-72 

cies in a guitar’s range, which can be seen in Figure 1. 73 

 74 

Figure 1. Initial W matrix shaped to follow pre-existing 75 

knowledge. 76 

    The W matrix output is then fed back into the next NMF 77 

algorithm, in the hopes of fine tuning the W matrix with 78 

each audio file. The resulting W matrix can be seen in fig-79 

ure 2. 80 

    The time focused audio consisted of recordings of a gui-81 

tarist playing a song on the guitar. This audio was also run 82 

through an NMF algorithm to create an Activation Dic-83 

tionary Matrix (H) which could be used to compare to tem-84 

poral based effects. An FFT is then applied to the combi-85 

nation of all the rows, providing a baseline curve that can 86 

be used as a comparison for identification. An example of 87 

this can be seen in Figure 3. 88 



  

 

 89 

Figure 2. Trained Baseline W matrix. 90 

 91 

Figure 3. FFT of Baseline H matrices. 92 

4. METHOD 93 

4.1 Time Based Effects 94 

The three time-based effects we looked at were tremolo, 95 

delay, and reverb.  For each of these effects, the first step 96 

of each algorithm is to run the input signal through an 97 

NMF algorithm to extract the activation matrix (H) with 98 

size [r,n]. In some cases, we combined all the rows of the 99 

H matrix to produce a master H matrix, with size [n], for 100 

the audio. This ends up approximating the amplitude per 101 

frame for the audio. Either the amplitude per frame or the 102 

full H matrix is useful when attempting to derive its char-103 

acteristics for replication. 104 

4.1.1 Tremolo 105 

The two controls that the tremolo algorithm aims to find 106 

are the frequency and depth of the amplitude modulation. 107 

To find the depth, we first take the time derivative of the 108 

master H matrix and then find all the zero crossing indexes. 109 

This provided us with a map to show when the amplitude 110 

changed directions. An example of this can be seen in Fig-111 

ure 4. 112 

    Using this we then looked to find the average percent 113 

change in amplitude between two consecutive peaks. On 114 

top of this, we only considered peaks where the following 115 

peak had a lower amplitude. The ratios between all these 116 

peaks are then averaged to find the predicted depth value. 117 

 118 

Figure 4. Zoomed in graph of peak amplitudes on top of 119 

the Master H matrix for a tremolo signal. 120 

 121 

Figure 5. FFT of the master H matrix for a signal with a 122 

10Hz tremolo effect applied. 123 

    For the frequency control, we applied an FFT to the 124 

master H matrix, which can be seen in Figure 5. For com-125 

parison, we also used our baseline dataset to find an ex-126 

pected FFT curve. We then subtract the baseline FFT from 127 

the tremolo FFT. This results in a frequency response with 128 

a strong peak at the frequency of the tremolo effect. An 129 

example of this can be seen in Figure 6. We then filter out 130 

amplitudes less than or equal to 0.1 to isolate this peak. An 131 

example of this can be seen in Figure 7. 132 

 133 

Figure 6. Difference of FFTs of the master H matrix for a 134 

10Hz tremolo signal and baseline signal. 135 



  

 

 136 

Figure 7. Filtered difference of FFTs of the master H ma-137 

trix for a 10Hz tremolo signal and baseline signal. 138 

    We identify this peak and then use parabolic interpola-139 

tion to determine the exact frequency identified. Finally, 140 

using this information we can generate a low-frequency 141 

oscillator (LFO) to control the amplitude of the provided 142 

clean audio. Once this is applied, the modified signal is 143 

then output to a rendered file. 144 

4.1.2 Reverb 145 

For this effect, the algorithm takes a slightly different ap-146 

proach compared to the previous one. This algorithm first 147 

finds the decay time, and then uses it to create an impulse 148 

response (IR) that can be convolved with the dry signal. 149 

For the decay time, it looks to find the average number of 150 

frames it takes the envelope of each row in the H matrix to 151 

go from a peak amplitude to below a specified threshold. 152 

For our tests, we used a threshold of 0.05. An example of 153 

one instance of an H matrix can be seen in Figure 8. Once 154 

this is known, it looks to find the average amplitude curve 155 

over that number of frames. Again, this is done for every 156 

row of the H matrix, and the results are averaged. An ex-157 

ample of this can be seen in Figure 9. 158 

    Once the decay time and decay curve are found, we then 159 

look at the STFT of the wet audio. It then finds the decay 160 

curve, using the same method mentioned for the amplitude 161 

curve, for each frequency bin. Once each frequency bin’s 162 

decay is found, it is multiplied by the amplitude curve, to 163 

ensure the IR follows the amplitude decay. An example 164 

STFT of a calculated IR can be seen in Figure 10. An in-165 

verse STFT function is then applied to the calculated IR to 166 

convert it into the time domain. Once this is done, it is con-167 

volved with the dry audio, and the algorithm outputs the 168 

modified audio and impulse response. 169 

 170 

Figure 8. Example of H matrix row, with envelope and 171 

peak identification. 172 

 173 

Figure 9. Example of calculated decay curve. 174 

 175 

Figure 10. Example of calculated impulse response. 176 

4.1.3 Delay 177 

For a delay effect, there are two controls that our proposed 178 

algorithm aims to find, the delay time and the echo ampli-179 

tude curve. The first control that the algorithm looks for is 180 

the delay time. To find this we used the same method used 181 

to find the frequency for the tremolo effect. Unlike the FFT 182 

results gotten from the tremolo effect, this FFT results in a 183 

frequency spectrum with small evenly spaced spikes 184 



  

 

which correlate to the delay “frequency.” An example of 185 

this can be seen in Figure 11. To determine this “fre-186 

quency” we first subtract the baseline FFT from the delay 187 

FFT, giving us the graph in Figure 12. We then use peak 188 

detection to find the location of each onset.  189 

 190 

Figure 11. FFT of the H matrix of a signal with a 500ms 191 

delay applied. 192 

    We then use an algorithm to find the most common 193 

spacing between peaks that is also equal to a peak value. 194 

This corresponds to the “fundamental frequency.” Invert-195 

ing this frequency yields the delay time, which we can eas-196 

ily convert from frames to seconds to get a usable value. 197 

    The next control parameter the algorithm looks for is the 198 

echo amplitude curve. This curve represents how loud each 199 

delayed signal is compared to the clean signal. To find this 200 

value, we use a similar method to find the decay curve for 201 

the reverb effect. However, in this case we use the already 202 

identified peaks and compare those amplitude peaks to the 203 

amplitude peaks that are integer multiples of the delay time 204 

away. 205 

   Essentially, we are using the fact that we know when to 206 

expect another peak, based on the delay time, to help de-207 

termine the amplitude change. This algorithm is run on 208 

each row in the activation matrix to get an average curve 209 

for each row. When we combine these curves, we also ig-210 

nore any large rising amplitudes (>= 0.2) as we assume 211 

that is a new note, rather than an echo. An example of this 212 

curve can be seen in Figure 16. 213 

   Once this is performed the results are averaged to find 214 

the predicted delay mix. Using the delay time and echo 215 

curve, we add the clean audio to itself, delayed by the 216 

amount we found, and multiplied by the averaged curve of 217 

the amplitude decays to output the signal. We then output 218 

the clean file with delays. 219 

 220 

Figure 12. Difference of FFTs of the H matrix for a de-221 

layed signal and baseline signal. 222 

4.2 Timbral Based Effects 223 

The goal for the timbral based effects is to be able to trans-224 

fer the timbral information from a wet signal to a dry sig-225 

nal. The focus was on distortion effects, but the algorithm 226 

could be expanded to any timbral based effect, like equal-227 

ization and amplifier/cabinet modeling. 228 

Three main methods were tested for these effects. These 229 

were all generally based on the principal of cross synthesis 230 

[5]. The first was using the average envelope shape to ad-231 

just the frequency information of a clean signal to match 232 

the envelope of the wet signal. For this, both audio files 233 

were run through an NMF algorithm to extract the W ma-234 

trix. From this, the envelope of each instance (column in 235 

the W matrix) is calculated before they are averaged to-236 

gether. For the clean signal, the envelope is also averaged 237 

with the baseline dataset’s averaged envelope. The wet and 238 

dry averaged envelopes are then compared to find a trans-239 

form function that is then applied to each instance in the 240 

clean signal’s W matrix. From this, the modified W matrix 241 

and clean signal’s H matrix are recombined with the orig-242 

inal phase, and an inverse-STFT is performed to generate 243 

the modified audio. 244 

 245 

Figure 16. Example of echo amplitude curve. 246 



  

 

Figure 13. Reverb algorithm block diagram.  247 

Figure 14. Tremolo algorithm block diagram.  248 

Figure 15. Delay algorithm block diagram.  249 

    The second method improves upon the first by looking 250 

at the average harmonic series amplitudes, rather than the 251 

average envelope. Similarly, to the first method, the clean 252 

signal’s W matrix is joined with the baseline W matrix. 253 

From this, the peaks in each instance of both the wet and 254 

clean W matrices are identified. Then using the same algo-255 

rithm used for the delay effect, find the most common 256 

spacing between all the peaks. This allows us to identify 257 

the fundamental frequency and the peaks that correspond 258 

to the harmonic series.   259 

     Examples of this can be seen in Figure 17 and Figure 260 

18. We can average the amplitude of the first 16 overtones, 261 

which can be seen in Figure 19. We then calculate a trans-262 

fer function based on the ratio between the wet and clean 263 

signal’s harmonic series amplitudes. This transform func-264 

tion is then applied to the provided clean signal, which 265 

goes through the same algorithm to identify the harmonic 266 

series, before the transform function is applied. 267 

The final method we looked at used the tanh function to 268 

approximate distortion specifically [6]. As a result, we 269 

tried to implement a machine learning based method that 270 

applies a tanh function to the inputted clean signal, and 271 

then compares it to the provided wet signal, to update the 272 

approximation. The planned method to find the difference 273 

between the two signals was to compare Mel Frequency 274 

Cepstrum Coefficients (MFCC) of both signals. However, 275 

we were unable to fund an effective equation to handle 276 

this. 277 

 278 

 279 

 280 

 281 

 282 

 283 

Figure 17. Predicted overtone series of one column of W 284 

matrix of clean signal. 285 

 286 

Figure 18. Predicted overtone series of one column of W 287 

matrix of distorted signal. 288 



  

 

 289 

Figure 19. Comparison of overtone series for clean and 290 

distorted signal 291 

4.3 Identification 292 

The final aspect of this algorithm to consider is its ability 293 

to identify what effect is applied to the provided signal. For 294 

timbral based effects, this method has not been imple-295 

mented. As a result, this will be a discussion of a proposed 296 

method. The proposed algorithm will calculate the MFCC 297 

of the provided audio. An example of these can be seen in 298 

Figure 20. 299 

It will then compare this to a pretrained library of 300 

MFCCs. This pretrained library will be used to find some 301 

equation that is able to represent where most values of the 302 

MFCCs are expected to be. Then these equations will be 303 

applied to the MFCC of the provided audio, and the per-304 

centage of values that fall within the ranges of this equa-305 

tion will be recorded. The equation that produces the best 306 

match will then be selected as the predicted effect. 307 

 308 

Figure 20. MFCC Coefficients 1, 2, and 3 for different 309 

types of distortion 310 

 311 

For time-based effects, it will use the FFT of the H ma-312 

trices for comparison. From our testing, we have identified 313 

that the FFTs of the H matrices vary significantly enough 314 

between a tremolo, delay, and reverb effect to allow for 315 

identification. To differentiate between them, we look at 316 

the number of peaks (Peak) above 0.01 and the number of 317 

large peaks (LPeak), which are the peaks above 0.1. Since 318 

the FFT of a tremolo effect results in one large spike and 319 

significant low amplitude noise, it has many total peaks 320 

and the largest peaks. The many small amplitude peaks in 321 

the FFT of a delay effect, results in a moderate number of 322 

total peaks, and typically has no large peaks. The FFT of a 323 

reverb effect is typically very similar to the clean baseline, 324 

and as a result it has the least number of total peaks, and 325 

few large peaks. To help with identification e also looked 326 

at the difference between a clean guitar FFT curve and the 327 

baseline. We found that the FFT of a clean signal is very 328 

similar to the baseline, but has a lot of low amplitude noise, 329 

like the tremolo effect. As a result, it has a similar number 330 

of total peaks as the tremolo effect, but with less large 331 

peaks, allowing the two to be differentiated. To determine 332 

these values, we trained the algorithm on our effects da-333 

taset, and the resulting values can be seen in Table 1. 334 

 335 

 Clean Tremolo Delay Reverb 

Peak 82.77 86.33 29.75 13.5 

LPeak 1.69 3.166 0 1.5 

 Table 1. Trained identification weights 336 

To calculate the match percentage, we use the following 337 

equations. In all cases, if the value calculated for A from 338 

Eqn (1) is less than 0, we use 0 in place of a negative value. 339 

If the expected LPeak (Exp LPeak) is above zero, we use 340 

Eqn (2), and in this case, if B is below 0, we use 0 in place 341 

of a negative value. If B is 0 and Exp LPeak is 0, then we 342 

assume B/(Exp LPeak) is 1. In all other cases we assume 343 

the second term is 1/B, in this case we take the absolute 344 

value of B. 345 

 346 

𝐴 = 𝐸𝑥𝑝 𝑃𝑒𝑎𝑘 −  |𝐸𝑥𝑝 𝑃𝑒𝑎𝑘 − 𝑃𝑒𝑎𝑘| 347 

𝐵 = 𝐸𝑥𝑝 𝐿𝑃𝑒𝑎𝑘 − |𝐸𝑥𝑝 𝐿𝑃𝑒𝑎𝑘 − 𝐿𝑃𝑒𝑎𝑘| 348 

Equation 1. Expected minus calculated distance. 349 

 350 

(
𝐴

𝐸𝑥𝑝 𝑃𝑒𝑎𝑘
+

𝐵

𝐸𝑥𝑝 𝐿𝑃𝑒𝑎𝑘
) ∗ 0.5 = 𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 351 

    Equation 2. Closeness percentage for  when Exp LPeak 352 

does not equal 0. 353 

5. RESULTS 354 

5.1 Time Based Effects Results  355 

Our results for replicating the delay are as follows. For 356 

identifying the delay time, the algorithm can correctly 357 

identify the delay time within 14% error. However, due to 358 

the nature of using NMF algorithms, which are random, 359 

the algorithm can occasionally result in guesses within 360 

22% error. This is likely due to some of the peaks in the 361 

FFT being less prominent, making it harder for the algo-362 

rithm to separate the peaks from noise. For the mix percent 363 

value, the algorithm can correctly identify the value within 364 

44% error. This is most likely due to the calculated echo 365 

curve, still being susceptible to other note onsets adjusting 366 

the amplitude values. The specific results for the delay ef-367 

fect can be seen in Table 2. 368 



  

 
 Run 1 Run 2 Run 3 Expected Lowest 

Error 

Avg 

Error 

Delay 

Time 

585ms 519ms 611ms 500ms 4% 14% 

Mix 71% 73% 72% 50% 42% 44% 

Table 2. Delay effect results for delayed signal with 369 

500ms delay time. 370 

 371 

Next, our results for replicating the tremolo are as fol-372 

lows. For the frequency, the algorithm can correctly iden-373 

tify the value within 2% error. On the other hand, for the 374 

depth, the algorithm can correctly identify the value within 375 

31% error. This is likely due to noise in the activation ma-376 

trix, and the peak identification, that causes inaccuracies in 377 

the amplitudes. The specific results for the tremolo effect 378 

can be seen in Table 3. 379 

 380 

 Run 1 Run 2 Run 3 Expected Lowest 

Error 

Avg 

Error 

Freq 9.84Hz 9.84Hz 9.84Hz 10.055Hz 2% 2% 

Depth 41% 42% 42% 60% 30% 31% 

Table 3. Tremolo effect results for tremolo signal with 381 

10Hz modulation frequency. 382 

 383 

Finally, our results for replicating the reverb are as fol-384 

lows. For the decay time, the algorithm can correctly iden-385 

tify the value within 8% error. The specific results for the 386 

reverb effect can be seen in Table 4. 387 

 388 

 Run 1 Run 2 Run 3 Expected Lowest 

Error 

Avg 

Error 

Decay 

Time 

1.838 

sec 

1.835 

sec 

1.932 

sec 

2 sec 3% 7% 

Table 4. Reverb Effect results for reverb signal with 2 sec-389 

ond decay time. 390 

 391 

 Listening to the outputted audio, the algorithm can ap-392 

ply a similar sounding reverb to the audio, however, there 393 

is still some artifacts and lack of clarity. 394 

For the time-based identification, we found that our al-395 

gorithm was able to consistent correctly identify the effect. 396 

A confusion matrix showing the percent match the algo-397 

rithm found for each inputted signal can be seen in Table 398 

5. For clarity, the highest match has been highlighted in 399 

green, and any other match percents 50% or above have 400 

been highlighted in orange. 401 

 402 

Guess Input Signal 

Clean Tremolo Delay Reverb 

Clean 69.83% 25.58% 50% 37.8% 

Tremolo 65.82% 65.6% 35.37% 23.66% 

Delay 25% 16.67% 92.86% 72.97% 

Reverb 33.33% 0% 33.33% 81.48% 

Table 5. Confusion matrix between inputted signal and the 403 

algorithm’s identification guess. 404 

 405 

    Looking at this table, while the algorithm correctly iden-406 

tified each effect, some had higher percentages with other 407 

effects. This is most likely due to similarities with the iden-408 

tification weights. For example, the clean and tremolo 409 

weights are almost identical, and the inputted clean signal 410 

had a large match percent for being a tremolo. As a result, 411 

it would be expected that these two have similar match per-412 

cents, as the difference between the number of large peaks 413 

is the only value that is useful for differentiating the two 414 

effects. For the delay/clean and reverb/delay confusion, it 415 

is likely due to the closeness of the number of large peaks. 416 

Since they are so close, it is very likely that the match per-417 

cent is inflated as a result. 418 

5.2 Timbre Based Effects Results 419 

Our results for replicating timbre-based effects are as fol-420 

lows. All three methods discussed are unable to accurately 421 

recreate the provided effect. The first two methods, involv-422 

ing the envelope and harmonic series amplitudes, result in 423 

audio which consists of the clean audio with significant ar-424 

tifacts and unintentional distortion. On the other hand, the 425 

third method, tanh approximation, can apply a more “typ-426 

ical” distortion sound but is unable to match the exact tone 427 

from the provided wet signal. There is also the issue of re-428 

turning the original phase, which there are some solutions, 429 

like the Griffin-Lim algorithm. This is important for when 430 

we return the inverse-STFT to reproduce the sound with 431 

minimal artifacts.  432 

6. DISCUSSION 433 

6.1 Summary 434 

This work can apply multiple effects to a provided clean 435 

guitar audio file, given a guitar recording with a single ef-436 

fect. This was tested using monophonic guitar recordings. 437 

The baseline dataset did include polyphonic guitar record-438 

ings (strummed with chords), but the effects data set did 439 

not include any. We found success in retrieving tremolo, 440 

delay, and reverb effects with usable results, while timbre 441 

was not useable. The timbral results we did obtain were 442 

interesting as a unique effect, but not the replication we 443 

intended.   444 

6.2 Future Work 445 

The large scope of this project requires various techniques 446 

to process each individual effect. While this may be more 447 

intuitive to figure out and process than a neural network, it 448 

requires a lot more study into methods per effect. We hope 449 

that improvements on timbre replication as well as a better 450 

approximation of delays can be done. 451 

    While these techniques are not exclusive to guitar, we 452 

focused on typical effects that guitarists use. We have not 453 

attempted to see how our program reacts with non-guitar 454 

effects, which may produce interesting results. We also 455 

have only tested with supplying our program with input 456 

signals of singular notes. Our methods should be robust to 457 

chords for time domain effects. We have not tested identi-458 

fying signals that have more than one effect. This project 459 

set out to obtain guitar effects from a supplied recording. 460 

With some training already applied, we can take a single 461 

effect and apply it to a signal we want. This proves that at 462 

a minimum, this is a viable concept, but there are various 463 

aspects to improve. This include, on a broader range of 464 

topics, various effects and being robust to multiple effects. 465 

This would mean adding more common effects as well as 466 

being able to identify them. On a smaller scale, we believe 467 

that each method we use in this: tremolo, reverb, and delay, 468 

could be more robust to minute changes, as well as more 469 

consistent in identification and replication. We also 470 

acknowledge the small dataset we used, which were self-471 



  

 

supplied recordings. Another consideration, given more 472 

time, would be to use a much larger dataset to develop a 473 

more accurate reference and see if and or how the results 474 

change. 475 
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