

STEALING GUITAR EFFECTS

J. Max Morris Alex Kim

University of Rochester
jmorr32@ur.rochester.edu

University of Rochester
akim65@ur.rochester.edu

ABSTRACT 1

Guitarists often look to other guitarists for new tones and 2

sounds to use. We propose a method to identify various 3

guitar effects and replicate them via inputting a recording 4

with effects and applying that to a dry recording to produce 5

that effect without knowing the parameters. This is done 6

using features extracted from a signal with effect with non-7

negative matrix factorization to compare to a known da-8

taset. 9

1. INTRODUCTION 10

Guitarists often hope to replicate other guitarist’s tones. 11

Whether this is through using the same pedals, same amps, 12

same guitar, or same plugins, these are usually quite ex-13

pensive and do not necessarily include what settings they 14

use. We propose a method to identify and reverse engineer 15

guitar effects from a single source to apply to other guitar 16

recordings. This includes time-based effects as well as tim-17

bre-based effects. 18

There have been several different methods that attempt 19

to do this individually, like dynamic convolution using im-20

pulse responses [1], neural networks [2], or virtual analog 21

representations [3], but this paper proposes various unique 22

and novel methods to accomplish this task. These are all 23

based on the features retrieved with non-negative matrix 24

factorization (NMF) [4]. This paper proposes ways to iden-25

tify and replicate delay, tremolo, and reverb effects given 26

a wet signal with one effect applied. We also reviewed 27

methods for timbre-based effects for further work. 28

2. BACKGROUND 29

NMF is a method used to decompose a V matrix into two 30

matrices, W and H [4]. In terms of audio, after applying a 31

short time Fourier transform (STFT), we can extract vari-32

ous characteristics of the sound. The H matrix for instance 33

is the activation matrix which shows note onsets. The W 34

matrix has the spectral characteristics of said activations. 35

To retrieve these W and H matrices, they can either be con-36

stantly changed or saved. In this case, for time-based ef-37

fects, we save the H matrix of an initial training set. This 38

set was of various clean (dry) guitar recordings. Useful in-39

formation can also be extracted with the NMF of signals 40

with effects on them (wet) for identification. These were 41

recorded with direct input using a Focusrite Scarlet audio 42

interface. For time-based effects, this was based on taking 43

the Fast Fourier Transform (FFT) of the activation matrix 44

for both identification and in some case, finding the prop-45

erties of the effects we hope to retrieve. We also hoped to 46

accomplish a method to retrieve a distortion and/or overall 47

timbre from a different recording and apply it to a dry sig-48

nal. The program asks for a wet signal that one would like 49

to identify, a clean signal to apply it to, datasets for dry and 50

wet effects. There are choices for pretrained data, or new 51

data if one would like to use their own. 52

3. DATASET 53

The dataset we used consisted of two main parts: the base-54

line dataset, and the effects dataset. The effects dataset 55

consists of guitar audio with various effects applied, in var-56

ious amounts including, reverb, delay, tremolo, and some 57

with no effects, all of which were monophonic music. This 58

dataset was used for training the identification weights as 59

well as for initial testing. For any training for the NMF, we 60

used 100 iterations and r value of 25. 61

On the other side, the baseline dataset can be broken 62

down into two components, the frequency and time fo-63

cused audio. For the frequency focused audio, we used re-64

cordings of a clean guitar playing every possible note on 65

the guitar. This consisted of 49 notes ranging from an E2 66

to an E6, corresponding to a 24-fret guitar’s range in stand-67

ard tuning. This audio was run through an NMF algorithm 68

and used to create a Frequency Dictionary matrix (W) 69

which represents the frequency content of a typical clean 70

guitar. To aid with accuracy, each column of the initial W 71

matrix consists of 0’s below the 49 fundamental frequen-72

cies in a guitar’s range, which can be seen in Figure 1. 73

 74

Figure 1. Initial W matrix shaped to follow pre-existing 75

knowledge. 76

 The W matrix output is then fed back into the next NMF 77

algorithm, in the hopes of fine tuning the W matrix with 78

each audio file. The resulting W matrix can be seen in fig-79

ure 2. 80

 The time focused audio consisted of recordings of a gui-81

tarist playing a song on the guitar. This audio was also run 82

through an NMF algorithm to create an Activation Dic-83

tionary Matrix (H) which could be used to compare to tem-84

poral based effects. An FFT is then applied to the combi-85

nation of all the rows, providing a baseline curve that can 86

be used as a comparison for identification. An example of 87

this can be seen in Figure 3. 88

 89

Figure 2. Trained Baseline W matrix. 90

 91

Figure 3. FFT of Baseline H matrices. 92

4. METHOD 93

4.1 Time Based Effects 94

The three time-based effects we looked at were tremolo, 95

delay, and reverb. For each of these effects, the first step 96

of each algorithm is to run the input signal through an 97

NMF algorithm to extract the activation matrix (H) with 98

size [r,n]. In some cases, we combined all the rows of the 99

H matrix to produce a master H matrix, with size [n], for 100

the audio. This ends up approximating the amplitude per 101

frame for the audio. Either the amplitude per frame or the 102

full H matrix is useful when attempting to derive its char-103

acteristics for replication. 104

4.1.1 Tremolo 105

The two controls that the tremolo algorithm aims to find 106

are the frequency and depth of the amplitude modulation. 107

To find the depth, we first take the time derivative of the 108

master H matrix and then find all the zero crossing indexes. 109

This provided us with a map to show when the amplitude 110

changed directions. An example of this can be seen in Fig-111

ure 4. 112

 Using this we then looked to find the average percent 113

change in amplitude between two consecutive peaks. On 114

top of this, we only considered peaks where the following 115

peak had a lower amplitude. The ratios between all these 116

peaks are then averaged to find the predicted depth value. 117

 118

Figure 4. Zoomed in graph of peak amplitudes on top of 119

the Master H matrix for a tremolo signal. 120

 121

Figure 5. FFT of the master H matrix for a signal with a 122

10Hz tremolo effect applied. 123

 For the frequency control, we applied an FFT to the 124

master H matrix, which can be seen in Figure 5. For com-125

parison, we also used our baseline dataset to find an ex-126

pected FFT curve. We then subtract the baseline FFT from 127

the tremolo FFT. This results in a frequency response with 128

a strong peak at the frequency of the tremolo effect. An 129

example of this can be seen in Figure 6. We then filter out 130

amplitudes less than or equal to 0.1 to isolate this peak. An 131

example of this can be seen in Figure 7. 132

 133

Figure 6. Difference of FFTs of the master H matrix for a 134

10Hz tremolo signal and baseline signal. 135

 136

Figure 7. Filtered difference of FFTs of the master H ma-137

trix for a 10Hz tremolo signal and baseline signal. 138

 We identify this peak and then use parabolic interpola-139

tion to determine the exact frequency identified. Finally, 140

using this information we can generate a low-frequency 141

oscillator (LFO) to control the amplitude of the provided 142

clean audio. Once this is applied, the modified signal is 143

then output to a rendered file. 144

4.1.2 Reverb 145

For this effect, the algorithm takes a slightly different ap-146

proach compared to the previous one. This algorithm first 147

finds the decay time, and then uses it to create an impulse 148

response (IR) that can be convolved with the dry signal. 149

For the decay time, it looks to find the average number of 150

frames it takes the envelope of each row in the H matrix to 151

go from a peak amplitude to below a specified threshold. 152

For our tests, we used a threshold of 0.05. An example of 153

one instance of an H matrix can be seen in Figure 8. Once 154

this is known, it looks to find the average amplitude curve 155

over that number of frames. Again, this is done for every 156

row of the H matrix, and the results are averaged. An ex-157

ample of this can be seen in Figure 9. 158

 Once the decay time and decay curve are found, we then 159

look at the STFT of the wet audio. It then finds the decay 160

curve, using the same method mentioned for the amplitude 161

curve, for each frequency bin. Once each frequency bin’s 162

decay is found, it is multiplied by the amplitude curve, to 163

ensure the IR follows the amplitude decay. An example 164

STFT of a calculated IR can be seen in Figure 10. An in-165

verse STFT function is then applied to the calculated IR to 166

convert it into the time domain. Once this is done, it is con-167

volved with the dry audio, and the algorithm outputs the 168

modified audio and impulse response. 169

 170

Figure 8. Example of H matrix row, with envelope and 171

peak identification. 172

 173

Figure 9. Example of calculated decay curve. 174

 175

Figure 10. Example of calculated impulse response. 176

4.1.3 Delay 177

For a delay effect, there are two controls that our proposed 178

algorithm aims to find, the delay time and the echo ampli-179

tude curve. The first control that the algorithm looks for is 180

the delay time. To find this we used the same method used 181

to find the frequency for the tremolo effect. Unlike the FFT 182

results gotten from the tremolo effect, this FFT results in a 183

frequency spectrum with small evenly spaced spikes 184

which correlate to the delay “frequency.” An example of 185

this can be seen in Figure 11. To determine this “fre-186

quency” we first subtract the baseline FFT from the delay 187

FFT, giving us the graph in Figure 12. We then use peak 188

detection to find the location of each onset. 189

 190

Figure 11. FFT of the H matrix of a signal with a 500ms 191

delay applied. 192

 We then use an algorithm to find the most common 193

spacing between peaks that is also equal to a peak value. 194

This corresponds to the “fundamental frequency.” Invert-195

ing this frequency yields the delay time, which we can eas-196

ily convert from frames to seconds to get a usable value. 197

 The next control parameter the algorithm looks for is the 198

echo amplitude curve. This curve represents how loud each 199

delayed signal is compared to the clean signal. To find this 200

value, we use a similar method to find the decay curve for 201

the reverb effect. However, in this case we use the already 202

identified peaks and compare those amplitude peaks to the 203

amplitude peaks that are integer multiples of the delay time 204

away. 205

 Essentially, we are using the fact that we know when to 206

expect another peak, based on the delay time, to help de-207

termine the amplitude change. This algorithm is run on 208

each row in the activation matrix to get an average curve 209

for each row. When we combine these curves, we also ig-210

nore any large rising amplitudes (>= 0.2) as we assume 211

that is a new note, rather than an echo. An example of this 212

curve can be seen in Figure 16. 213

 Once this is performed the results are averaged to find 214

the predicted delay mix. Using the delay time and echo 215

curve, we add the clean audio to itself, delayed by the 216

amount we found, and multiplied by the averaged curve of 217

the amplitude decays to output the signal. We then output 218

the clean file with delays. 219

 220

Figure 12. Difference of FFTs of the H matrix for a de-221

layed signal and baseline signal. 222

4.2 Timbral Based Effects 223

The goal for the timbral based effects is to be able to trans-224

fer the timbral information from a wet signal to a dry sig-225

nal. The focus was on distortion effects, but the algorithm 226

could be expanded to any timbral based effect, like equal-227

ization and amplifier/cabinet modeling. 228

Three main methods were tested for these effects. These 229

were all generally based on the principal of cross synthesis 230

[5]. The first was using the average envelope shape to ad-231

just the frequency information of a clean signal to match 232

the envelope of the wet signal. For this, both audio files 233

were run through an NMF algorithm to extract the W ma-234

trix. From this, the envelope of each instance (column in 235

the W matrix) is calculated before they are averaged to-236

gether. For the clean signal, the envelope is also averaged 237

with the baseline dataset’s averaged envelope. The wet and 238

dry averaged envelopes are then compared to find a trans-239

form function that is then applied to each instance in the 240

clean signal’s W matrix. From this, the modified W matrix 241

and clean signal’s H matrix are recombined with the orig-242

inal phase, and an inverse-STFT is performed to generate 243

the modified audio. 244

 245

Figure 16. Example of echo amplitude curve. 246

Figure 13. Reverb algorithm block diagram. 247

Figure 14. Tremolo algorithm block diagram. 248

Figure 15. Delay algorithm block diagram. 249

 The second method improves upon the first by looking 250

at the average harmonic series amplitudes, rather than the 251

average envelope. Similarly, to the first method, the clean 252

signal’s W matrix is joined with the baseline W matrix. 253

From this, the peaks in each instance of both the wet and 254

clean W matrices are identified. Then using the same algo-255

rithm used for the delay effect, find the most common 256

spacing between all the peaks. This allows us to identify 257

the fundamental frequency and the peaks that correspond 258

to the harmonic series. 259

 Examples of this can be seen in Figure 17 and Figure 260

18. We can average the amplitude of the first 16 overtones, 261

which can be seen in Figure 19. We then calculate a trans-262

fer function based on the ratio between the wet and clean 263

signal’s harmonic series amplitudes. This transform func-264

tion is then applied to the provided clean signal, which 265

goes through the same algorithm to identify the harmonic 266

series, before the transform function is applied. 267

The final method we looked at used the tanh function to 268

approximate distortion specifically [6]. As a result, we 269

tried to implement a machine learning based method that 270

applies a tanh function to the inputted clean signal, and 271

then compares it to the provided wet signal, to update the 272

approximation. The planned method to find the difference 273

between the two signals was to compare Mel Frequency 274

Cepstrum Coefficients (MFCC) of both signals. However, 275

we were unable to fund an effective equation to handle 276

this. 277

 278

 279

 280

 281

 282

 283

Figure 17. Predicted overtone series of one column of W 284

matrix of clean signal. 285

 286

Figure 18. Predicted overtone series of one column of W 287

matrix of distorted signal. 288

 289

Figure 19. Comparison of overtone series for clean and 290

distorted signal 291

4.3 Identification 292

The final aspect of this algorithm to consider is its ability 293

to identify what effect is applied to the provided signal. For 294

timbral based effects, this method has not been imple-295

mented. As a result, this will be a discussion of a proposed 296

method. The proposed algorithm will calculate the MFCC 297

of the provided audio. An example of these can be seen in 298

Figure 20. 299

It will then compare this to a pretrained library of 300

MFCCs. This pretrained library will be used to find some 301

equation that is able to represent where most values of the 302

MFCCs are expected to be. Then these equations will be 303

applied to the MFCC of the provided audio, and the per-304

centage of values that fall within the ranges of this equa-305

tion will be recorded. The equation that produces the best 306

match will then be selected as the predicted effect. 307

 308

Figure 20. MFCC Coefficients 1, 2, and 3 for different 309

types of distortion 310

 311

For time-based effects, it will use the FFT of the H ma-312

trices for comparison. From our testing, we have identified 313

that the FFTs of the H matrices vary significantly enough 314

between a tremolo, delay, and reverb effect to allow for 315

identification. To differentiate between them, we look at 316

the number of peaks (Peak) above 0.01 and the number of 317

large peaks (LPeak), which are the peaks above 0.1. Since 318

the FFT of a tremolo effect results in one large spike and 319

significant low amplitude noise, it has many total peaks 320

and the largest peaks. The many small amplitude peaks in 321

the FFT of a delay effect, results in a moderate number of 322

total peaks, and typically has no large peaks. The FFT of a 323

reverb effect is typically very similar to the clean baseline, 324

and as a result it has the least number of total peaks, and 325

few large peaks. To help with identification e also looked 326

at the difference between a clean guitar FFT curve and the 327

baseline. We found that the FFT of a clean signal is very 328

similar to the baseline, but has a lot of low amplitude noise, 329

like the tremolo effect. As a result, it has a similar number 330

of total peaks as the tremolo effect, but with less large 331

peaks, allowing the two to be differentiated. To determine 332

these values, we trained the algorithm on our effects da-333

taset, and the resulting values can be seen in Table 1. 334

 335

 Clean Tremolo Delay Reverb

Peak 82.77 86.33 29.75 13.5

LPeak 1.69 3.166 0 1.5

 Table 1. Trained identification weights 336

To calculate the match percentage, we use the following 337

equations. In all cases, if the value calculated for A from 338

Eqn (1) is less than 0, we use 0 in place of a negative value. 339

If the expected LPeak (Exp LPeak) is above zero, we use 340

Eqn (2), and in this case, if B is below 0, we use 0 in place 341

of a negative value. If B is 0 and Exp LPeak is 0, then we 342

assume B/(Exp LPeak) is 1. In all other cases we assume 343

the second term is 1/B, in this case we take the absolute 344

value of B. 345

 346

𝐴 = 𝐸𝑥𝑝 𝑃𝑒𝑎𝑘 − |𝐸𝑥𝑝 𝑃𝑒𝑎𝑘 − 𝑃𝑒𝑎𝑘| 347

𝐵 = 𝐸𝑥𝑝 𝐿𝑃𝑒𝑎𝑘 − |𝐸𝑥𝑝 𝐿𝑃𝑒𝑎𝑘 − 𝐿𝑃𝑒𝑎𝑘| 348

Equation 1. Expected minus calculated distance. 349

 350

(
𝐴

𝐸𝑥𝑝 𝑃𝑒𝑎𝑘
+

𝐵

𝐸𝑥𝑝 𝐿𝑃𝑒𝑎𝑘
) ∗ 0.5 = 𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 351

 Equation 2. Closeness percentage for when Exp LPeak 352

does not equal 0. 353

5. RESULTS 354

5.1 Time Based Effects Results 355

Our results for replicating the delay are as follows. For 356

identifying the delay time, the algorithm can correctly 357

identify the delay time within 14% error. However, due to 358

the nature of using NMF algorithms, which are random, 359

the algorithm can occasionally result in guesses within 360

22% error. This is likely due to some of the peaks in the 361

FFT being less prominent, making it harder for the algo-362

rithm to separate the peaks from noise. For the mix percent 363

value, the algorithm can correctly identify the value within 364

44% error. This is most likely due to the calculated echo 365

curve, still being susceptible to other note onsets adjusting 366

the amplitude values. The specific results for the delay ef-367

fect can be seen in Table 2. 368

 Run 1 Run 2 Run 3 Expected Lowest

Error

Avg

Error

Delay

Time

585ms 519ms 611ms 500ms 4% 14%

Mix 71% 73% 72% 50% 42% 44%

Table 2. Delay effect results for delayed signal with 369

500ms delay time. 370

 371

Next, our results for replicating the tremolo are as fol-372

lows. For the frequency, the algorithm can correctly iden-373

tify the value within 2% error. On the other hand, for the 374

depth, the algorithm can correctly identify the value within 375

31% error. This is likely due to noise in the activation ma-376

trix, and the peak identification, that causes inaccuracies in 377

the amplitudes. The specific results for the tremolo effect 378

can be seen in Table 3. 379

 380

 Run 1 Run 2 Run 3 Expected Lowest

Error

Avg

Error

Freq 9.84Hz 9.84Hz 9.84Hz 10.055Hz 2% 2%

Depth 41% 42% 42% 60% 30% 31%

Table 3. Tremolo effect results for tremolo signal with 381

10Hz modulation frequency. 382

 383

Finally, our results for replicating the reverb are as fol-384

lows. For the decay time, the algorithm can correctly iden-385

tify the value within 8% error. The specific results for the 386

reverb effect can be seen in Table 4. 387

 388

 Run 1 Run 2 Run 3 Expected Lowest

Error

Avg

Error

Decay

Time

1.838

sec

1.835

sec

1.932

sec

2 sec 3% 7%

Table 4. Reverb Effect results for reverb signal with 2 sec-389

ond decay time. 390

 391

 Listening to the outputted audio, the algorithm can ap-392

ply a similar sounding reverb to the audio, however, there 393

is still some artifacts and lack of clarity. 394

For the time-based identification, we found that our al-395

gorithm was able to consistent correctly identify the effect. 396

A confusion matrix showing the percent match the algo-397

rithm found for each inputted signal can be seen in Table 398

5. For clarity, the highest match has been highlighted in 399

green, and any other match percents 50% or above have 400

been highlighted in orange. 401

 402

Guess Input Signal

Clean Tremolo Delay Reverb

Clean 69.83% 25.58% 50% 37.8%

Tremolo 65.82% 65.6% 35.37% 23.66%

Delay 25% 16.67% 92.86% 72.97%

Reverb 33.33% 0% 33.33% 81.48%

Table 5. Confusion matrix between inputted signal and the 403

algorithm’s identification guess. 404

 405

 Looking at this table, while the algorithm correctly iden-406

tified each effect, some had higher percentages with other 407

effects. This is most likely due to similarities with the iden-408

tification weights. For example, the clean and tremolo 409

weights are almost identical, and the inputted clean signal 410

had a large match percent for being a tremolo. As a result, 411

it would be expected that these two have similar match per-412

cents, as the difference between the number of large peaks 413

is the only value that is useful for differentiating the two 414

effects. For the delay/clean and reverb/delay confusion, it 415

is likely due to the closeness of the number of large peaks. 416

Since they are so close, it is very likely that the match per-417

cent is inflated as a result. 418

5.2 Timbre Based Effects Results 419

Our results for replicating timbre-based effects are as fol-420

lows. All three methods discussed are unable to accurately 421

recreate the provided effect. The first two methods, involv-422

ing the envelope and harmonic series amplitudes, result in 423

audio which consists of the clean audio with significant ar-424

tifacts and unintentional distortion. On the other hand, the 425

third method, tanh approximation, can apply a more “typ-426

ical” distortion sound but is unable to match the exact tone 427

from the provided wet signal. There is also the issue of re-428

turning the original phase, which there are some solutions, 429

like the Griffin-Lim algorithm. This is important for when 430

we return the inverse-STFT to reproduce the sound with 431

minimal artifacts. 432

6. DISCUSSION 433

6.1 Summary 434

This work can apply multiple effects to a provided clean 435

guitar audio file, given a guitar recording with a single ef-436

fect. This was tested using monophonic guitar recordings. 437

The baseline dataset did include polyphonic guitar record-438

ings (strummed with chords), but the effects data set did 439

not include any. We found success in retrieving tremolo, 440

delay, and reverb effects with usable results, while timbre 441

was not useable. The timbral results we did obtain were 442

interesting as a unique effect, but not the replication we 443

intended. 444

6.2 Future Work 445

The large scope of this project requires various techniques 446

to process each individual effect. While this may be more 447

intuitive to figure out and process than a neural network, it 448

requires a lot more study into methods per effect. We hope 449

that improvements on timbre replication as well as a better 450

approximation of delays can be done. 451

 While these techniques are not exclusive to guitar, we 452

focused on typical effects that guitarists use. We have not 453

attempted to see how our program reacts with non-guitar 454

effects, which may produce interesting results. We also 455

have only tested with supplying our program with input 456

signals of singular notes. Our methods should be robust to 457

chords for time domain effects. We have not tested identi-458

fying signals that have more than one effect. This project 459

set out to obtain guitar effects from a supplied recording. 460

With some training already applied, we can take a single 461

effect and apply it to a signal we want. This proves that at 462

a minimum, this is a viable concept, but there are various 463

aspects to improve. This include, on a broader range of 464

topics, various effects and being robust to multiple effects. 465

This would mean adding more common effects as well as 466

being able to identify them. On a smaller scale, we believe 467

that each method we use in this: tremolo, reverb, and delay, 468

could be more robust to minute changes, as well as more 469

consistent in identification and replication. We also 470

acknowledge the small dataset we used, which were self-471

supplied recordings. Another consideration, given more 472

time, would be to use a much larger dataset to develop a 473

more accurate reference and see if and or how the results 474

change. 475

7. REFERENCES 476

[1] M. Kemp, “Analysis and Simulation of Non-Linear 477

Audio Processes using Finite Impulse Responses De-478

rived at Multiple Impulse Amplitudes,” AES 106th 479

Convention, Munich, Germany, 1999, 480

[2] J. Engel, L. Hantrakul, C. Gu, A. Roberts, “DDSP: 481

Differentiable Digital Signal Processing,” Interna-482

tional Conference on Learning Representations, 483

Online 2020. 484

[3] D. T. Yeh and J. S. Abel, Automated Physical Mod-485

eling of Nonlinear Audio Circuits for Real-Time Au-486

dio Effect – Part 1: Theoretical Development, “IEEE 487

Transactions on Speech and Audio Procession,” vol. 488

18, no. 3, March 2010. 489

[4] D. D. Lee and H. S. Seung, “Learning the parts of 490

objects by non-negative matrix factorization,” Na-491

ture Journal, vol. 401, pp 788-791, October 1999. 492

[5] G. Roma, O. Green, P. Tremblay, “Audio Morphing 493

Using Matrix Decomposition and Optimal 494

Transport,” in International Conference on Digital 495

Audio Effects, Online, 2020. 496

[6] J. T. Colonel, M. Comunita, J. Reiss, “Reverse Engi-497

neering Memoryless Distortion Effects with Differ-498

entiable Waveshapers,” AES 153rd Convention, New 499

York, NY, 2020. 500

