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Nuances in Spectral Content Between Different Tunings
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Goals

e Determine if a CNN and shallow classifier model is capable of

distinguishing between different tunings using audio alone
o  We looked at the 7 different tunings

e Explore what might make tunings distinguishable
e Find ways to maximize the accuracy of the classifier

e Improve upon previous work, which found similar approach
was promising with a limited dataset
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Dataset Collection

e No suitable dataset for our project existed, so we had to create our own
e All audio used contains only guitar as not to confuse the model in training
e Audio across all tunings contain clean tones, distortion, and other effects

e The dataset includes:

o 96 ten-second clips of solo guitar, sourced from YouTube videos
o 164 ten-second clips of stem-separated guitar, sourced from songs of many genres

e C(lips were manually selected in an effort to make sure they were
characteristic of their tuning



Model

e Generate feature embeddings with pre-trained OpenlL3 model (256 Band
Mel Spectrogram, embedding dimensionality of 6144, .5 second hop, 1
second window)

e C(lassify each frame of embeddings with Support Vector Machine
(polynomial kernel)

e We can train multiple classifiers based on lowest detected pitch



Results

Acc=77.5%
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Conclusions

e Achieved moderate success, but may be hitting limits of OpenL3

e Our model was trained on short frames of audio, which may introduce error,
especially with single notes

e Differentiating between closely related tunings (multiple strings tuning to
same pitch) might require music theory and/or genre information
o Open Tunings: predominantly major chords and Folk/Indie genres
o Drop Tunings: predominantly power chords and Rock/Metal genres
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