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Conditioned Short-Form Raw Audio Generation

• Main goal is to build a model to generate jingles based off a 

predetermined set of moods that the user can select from

• Steps include:
• Create WaveNet model based off of previous work

• Train model on a large music dataset as a form of pre-training

• Continue training model using a database of jingles

• Generate jingles from the model



Background: WaveNet

• 2016 generative model for raw audio from Google Deepmind

 

• Useful for many audio tasks, including text-to-speech, 

speech-to-text, and music generation

• Can have a “memory” of a few seconds



WaveNet: How does it work?
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Model Structure

van den Oord et. al. (2016))



Generation

van den Oord et. al. (2016)



Datasets: FMA Dataset

• Used for preliminary training of the model to generate music

• Not nearly enough jingles to create a dataset of that caliber

• Royalty-free music samples from Free Music Archive

• Multiple sizes (small, medium, large, etc.)

• We utilized the FMA Small dataset

• 8000 audio samples, each 30-seconds long 



Datasets: Jingle Dataset

• Created our own jingle dataset since none preexisting

• Collected 420+ from various royalty free websites [8,9,10,11,12]

• Manually labeled and categorized each jingle into 5 different moods

• Moods were chosen based off of what was most commonly heard
• 58 Melancholy (mel)

• 53 Mysterious (mys)

• 75 Playful (plf)

• 90 Relaxing (rlx)

• 144 Upbeat (upb)



Experimentation: One Song Experiment

• Proof of concept experiment

• If only trained on a single song the model 

should learn to “predict” that song and 

recreate it perfectly

• Trial and error to find the right model 

hyperparameters

• Limited memory for computation

• Multiple Stacks vs Larger Receptive Field

Hyperparameters Trial #1 Trial #2 
 Batch Size: 1 1
 Stack Size: 4 1
 Layer Size: 8 24
 Learning Rate: 0.003 0.003
 Total Epochs Trained: 1252 1536



One Song Experiment: Results (Entire Song)

• Original Audio:

• Forward Pass through Model (predicted by the model, just one sample at a time)

• Output of Generation Algorithm (predicted on previously predicted samples)



What if we simplified it?

• Trained the model on a sine wave to scale it down and look into 

generation algorithm further

• Gave it 512 samples and had it predict the rest

• Proof that it can generate something harmonic, we just were not able to 

train a complex enough model or train it for long enough



Experimentation: Model Training on 
FMA_small
• Training environment:

• 2x Nvidia 1080ti GPUs (20gb GPU RAM total)

• Learning rate=0.001, Adam optimizer

• 90,000 training steps (and counting…)

• Stack_size=4, Layer_size=8

• Maximum receptive field=256 samples (~2ms)

• No help from Google on any of this

• Couldn’t fit the whole model on two cards!



Computation (and Lack Thereof)

• The biggest bottleneck, by far, was computation

• Simply did not have access to the compute required to generate 
realistic musical fragments

• Forced us to simplify the scope of the project to modeling one song 
– or even just a sine wave

• We couldn’t fit a WaveNet model large enough to generate realistic 
music fragments on 20gb of GPU RAM

The story of this project



What’s next? Future Work

• Experimenting with the generation model for better results
• Training on sine wave converged with 0.00012 cross-entropy loss. Why isn’t 

our generated audio better? Something’s fishy…
• Adding a third GPU to our training computer to increase receptive 

field and stack size
• Training on FMA-Full (1TB of audio)
• Adjusting hyperparameters

• Learning schedule
• Length of input audio

• Fine-tuning the model on our custom dataset
• Global conditioning of the model
• AWS/Azure for more compute? Different model?
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