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Problem Definition

• Given an audio, transcript the corresponding notes from each 
track

2



What’s Special about Chorale Music?

● Lack of dataset: Most of the datasets available are less than one 
hour, insufficient for large model training

● However, there exist recordings on YouTube and MIDI files in 
database which are not timely aligned

● To make use of these unaligned data, we need to find a way to 
do training with content-aligned, not timely-aligned supervision – 
Dynamic Time Warping (DTW)
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Previous Method

• B Maman et al. "Unaligned supervision for automatic music transcription in the wild." 
International Conference on Machine Learning. PMLR, 2022.

• Pretrain the model with synthesized data
• Perform DTW between the transcription and the unaligned labels to 

acquire training target
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Previous Method

• Pro: Allowing the unaligned data to be used in training

• Con: Not end-to-end. The labeling process and the gradient 
descent are separated, since DTW is not differentiable.

• Is there any way to make gradient flow in DTW?
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Soft DTW

● Introduce gradient into the DTW alignment process

● Can be applied to measure the distance between prediction and 
unaligned ground-truth
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Architecture

Soft DTW
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Dataset and Representation

● Bach Chorale: 54 Bach composed chorale music recordings with 
corresponding midi, with total length of 1 hour 52 min

● Using 47 of them; train:validation:test = 37:5:5

● Format
● 3: onset; 2: sustain; 1: ending
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Result

• Comparing between the DTW method and the proposed Soft-
DTW method
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Result

10

0.5

0.55

0.6

0.65

0.7

0.75

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Onset Precision (60ms)

Soft-DTW Onset Precision

DTW Onset Precision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Onset Recall (60ms)

Soft-DTW Onset Recall DTW Onset Recall

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Onset F1 (60ms)

Soft-DTW Onset F1 DTW Onset F1

X axis is the threshold



Result
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Future Works

• Collect larger dataset from the Internet to train the model

• Streaming: Identify different parts in performance; may involve a 
music content sequential model

• Generalize to general music transcription
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Thank you!
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