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Problem Definition

. Given an audio, transcript the corresponding notes from each
track
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What's Special about Chorale Music?

. Lack of dataset: Most of the datasets available are less than one
hour, insufficient for large model training

. However, there exist recordings on YouTube and MIDI files in
database which are not timely aligned

. To make use of these unaligned data, we need to find a way to
do training with content-aligned, not timely-aligned supervision —
Dynamic Time Warping (DTW)



Previous Method

* B Maman et al. "Unaligned supervision for automatic music transcription in the wild."

International Conference on Machine Learning.
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* Pretrain the model with synthesized data
* Perform DTW between the transcription and the unaligned labels to
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rd
Trawn
-~
~
b Y
-
—
—
q@ E
—
=
[Hawthorne .
Predict
et al. 2019] redictions



Previous Method

* Pro: Allowing the unaligned data to be used In training

* Con: Not end-to-end. The labeling process and the gradient
descent are separated, since DTW is not differentiable.

* |s there any way to make gradient flow in DTW?



Soft DTW

. Introduce gradient into the DTW alignment process

. Can be applied to measure the distance between prediction and
unaligned ground-truth
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Architecture
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Dataset and Representation

. Bach Chorale: 54 Bach composed chorale music recordings with
corresponding midi, with total length of 1 hour 52 min

. Using 47 of them; train:validation:test = 37:5:5

. Format
. 3: onset; 2: sustain; 1: ending
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Result

* Comparing between the DTW method and the proposed Soft-
DTW method
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Result
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Result
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Future Works

* Collect larger dataset from the Internet to train the model

e Streaming: Identify different parts in performance; may involve a
music content sequential model

* Generalize to general music transcription



Thank you!
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