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ABSTRACT

Chorale music transcription has been an infrequent topic
in the field of automatic music transcription due to the ho-
mogeneity of the sound sources, the smooth attack of the
notes, and especially the lack of detailly labeled training
data. Meanwhile, the soft-DTW method can align two se-
quences of different lengths with gradients to enable back-
propagation and can be used when time-aligned data are
unavailable. Therefore, soft-DTW training loss can help
alleviate the problem of data shortage. In this work, we ex-
plore soft-DTW loss in the chorale music transcription task
and conclude that it performs better than DTW-aligned
target training and is suitable for end-to-end music tran-
scription model training when people do not have a time-
aligned dataset.

1. INTRODUCTION

Automatic Music Transcription (AMT) has long been a
popular research topic in Music Information Retrieval
(MIR), as it is the basis of many other symbolic analy-
sis downstream tasks, such as motif analysis and structure
analysis. Meanwhile, a high-performance AMT system
can also be used to create large datasets, which plays an
important role in supporting the trend of large model train-
ing.

While most of the works in AMT focus on the transcrip-
tion of instrumental music, such as piano and symphonic
performance, the transcription of choral music is still an
under-explored area. Compared with instrumental pieces,
the homogeneity of sound sources and the vagueness of the
note onsets in chorale music performances add difficulty
to the transcription task. Also, the quantity of existing
datasets can hardly support the training of large models.
They are typically less than one hour, and some datasets
only contain 20 minutes of recordings [1]. Meanwhile,
there are plenty of recordings on YouTube and human-
transcribed MIDI scores on the archive websites, but the
only information that links them together is the song title
and the composer’s name. They could contain the same
music content, but typically, the time stamps of the notes
are totally off. One method that could solve the alignment
problem is Dynamic Time Warping (DTW); however, it is
not differentiable and can not be used in end-to-end model
training.

This situation urges us to develop methods to train neu-
ral transcription models using large amounts of unaligned
data. In 2017, M. Cuturi et al. proposed soft-DTW [2],

which introduces gradient into the Dynamic Time Warp-
ing (DTW) procedure. Then, training with unaligned data
becomes feasible. This paper will explore whether soft-
DTW training loss can improve the model’s performance
in the chorale transcription task. The following sections
are constructed as follows: section 2 describes the soft-
DTW method and model architecture; Section 3 discusses
the experiment, including the dataset, experiment settings,
and results; and finally, section 4 concludes the paper.

2. METHOD

I used two main parts of the method in this work: soft-
DTW [2] and the architecture proposed by [3]. Soft-DTW
provides a convenient way to compute the loss between
unaligned audio and midi annotations, and the model im-
plements the transcriber.

2.1 Soft-DTW

First proposed in [2], the soft-DTW method is a standard
of differentiably matching two sequences with different
lengths.

Given two sequences x ∈ Rk,m, y ∈ Rk,n, k is the di-
mension of each elements in the sequence, m is the length
of x, n is the length of y. The first step to do time warping
between two sequences is to calculate their distance matrix
∆(x, y) := [δ(xi, yj)]ij . People usually use distance func-
tions such as cosine-similarity or binary cross-entropy as
function δ. In this work, we model the transcription task as
a binary classification problem at each time frame in each
note entry. Therefore, we use binary cross-entropy as δ.

Let’s consider the DTW [4] alignment and Global
Alignment kernel (GAK) [5] method to find the align-
ment path. If we denote the alignment matrix as A, then
the alignment score can be expressed as ⟨A,∆⟩, the inner
product of the two matrices. The score can also be ex-
pressed by:

DTW(x,y) = min
A

⟨A,∆(x,y)⟩ (1)

kγGA(x,y) =
∑
A

e−⟨A,∆(x,y)⟩/γ (2)

When γ = 0, the GAK case degenerates into the normal
DTW case.

Then, we generalize the definition of the min operator:

minγ{a1, . . . , an} =

{
min1≤i≤n ai, γ = 0

−γ log
∑n

i=1 e
−ai/γ , γ > 0

(3)



Figure 1. Onsets and Frames architecture from [3]

With this operator, we can link the DTW and GAK to-
gether to define γ-soft-DTW:

dtwγ(x,y) = minγ{⟨A,∆(x,y)⟩} (4)

Now let’s consider the derivative of the dtwγ(x,y). For
simplicity, here we only discuss the case when γ > 0. Ac-
cording to the chain rule,

∇xdtwγ(x,y) =

(
∂∆(x,y)

∂x

)⊺

Eγ [A] (5)

, where

Eγ [A] =
1

kγGA(x,y)

∑
A

e−⟨A,∆(x,y)/γ⟩A (6)

Since all the parameters are known during computation, we
can perform the forward and backward calculations during
training. Section 2.3 of [2] shows the detailed backward
calculation algorithm.

2.2 Model Architecture

For the transcription model, I used the model from [3],
which takes mel-spectrogram as input and detects the on-
set, offset, and activation in each frame. The "activation"
block and the "onset" block are shown in Figure 1. The
convolution stacks after the mel-spectrogram input act as
an acoustic model, and the bi-directional LSTM layer com-
putes the time-dependent information. In real implementa-
tion, there is also an "offset" block to calculate the end time
of the notes with the same structure as the "onset" blocks,
and the onset and offset predictions will all be sent to the
activated bi-directional LSTM of the "activation" block to
calculate the final note-activation matrix per frame.

The loss L is computed with three components, Lonset,
Loffset and Lframe. The ground truths are the multi-
hot activation matrix M ∈ RN,T , where N is the num-
ber of MIDI notes, and T is the number of the frames in

the ground truth. The prediction output of each block is
matched with the corresponding ground truth with soft-
DTW, respectively, and finally, we sum all the losses to-
gether to get the final loss L.

3. EXPERIMENT

3.1 Dataset

We used the BachChorale [6] dataset to do training and
evaluation. It contains 54 chorale music pieces composed
by J.S. Bach, each with a performance recording and the
corresponding time-aligned MIDI file. After data cleaning,
we divided the dataset into 37 training songs, five evalua-
tion songs, and five test songs.

3.2 Baseline Model

B. Maman et al. proposed a DTW-based method to achieve
unaligned supervision in training music transcription mod-
els [7]. They pre-trained the model with synthesized MIDI
data to provide it with a standard pitch recognition ability.
Then, the model was trained in a two-stage manner: first,
to create the time-aligned training target, they aligned the
ground truth with the transcription from the model; then,
they used the aligned training target to train the model with
normal binary cross-entropy loss and back-propagation.
This is a get-away method from the problem of DTW’s
non-differentiable property, and we will compare its per-
formance with the proposed soft-DTW trained model.

3.3 Training Settings

We use the soft-DTW loss with gamma starting at 3 and
decreases 1e−4 every step. According to [8], decreas-
ing gamma in soft-DTW can help stabilize the alignment
path when we just start the training. The target MIDI se-
quence in the soft-DTW scenario is a standard MIDI with
no tempo change or fermata notations, therefore the model
and the soft-DTW need to find the true path by themselves.

The two models are trained with batch size of 4, learn-
ing rate of 0.0001.

3.4 Experiment Results

Table 1 shows the experiment result. We can see that the
soft-DTW method outperforms the DTW-aligned model
in frame activation precision and achieves a comparable,
if not better, performance in onset detection. In figure 2
and 3, we can see that the precision of frame prediction is
governed by the proposed method, and the onset detection
performance of the proposed method is slightly better in
most of the thresholds. The frame activation recall of the
proposed method is lower than the DTW-aligned method,
within an acceptable range. Generally, the numerical re-
sults show that soft-DTW significantly improves the preci-
sion of frame activation detection and is capable of acting
as the training criteria with unaligned datasets in chorale
transcription tasks.

Figure 4 shows an example of transcription. From top to
bottom are the MIDI ground truth notation, DTW-aligned



Method
Frame Activation Onset Activation (60ms)

Prec. Recall f1 Prec. Recall f1

DTW-aligned [7] 0.717 0.825 0.767 0.632 0.507 0.562
Soft-DTW(proposed) 0.589 0.844 0.694 0.626 0.491 0.550

Table 1. Precision, recall, and f1 score of the baseline and the proposed method. The decision threshold is set to 0.5, and
the accepting window of the onset is set to 60ms.

Figure 2. Frame activation precision, recall, and f1 score with different decision thresholds.

Figure 3. Onset activation precision, recall, and f1 score with different decision thresholds.

Figure 4. An example of transcription result. From top to bottom: MIDI ground truth notation, DTW-aligned model result,
soft-DTW model result.



model result, soft-DTW model result. We can see the soft-
DTW method reduces the false positives from the DTW-
aligned method. It also reduces incorrect onset detections.

4. CONCLUSION AND FUTURE WORK

This paper shows that when people cannot find a time-
aligned dataset to train transcription models, soft-DTW
training loss can help them train a relatively good model
with the unaligned dataset. To further prove the ability of
the soft-DTW method to make use of large data, we need to
collect more performance recordings and the correspond-
ing notations and train the model with a larger corpus to
see whether the performance will improve.
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