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ABSTRACT1

Diffusion Denoising Probabilistic Models (DDPM) [1]2

aim to learn the underlying data distribution of some ob-3

servations. Although similar in objective to that of gen-4

erative adversarial networks (GAN) [2] and variational5

auto-encoders (VAE) [3], a DDPM differs in its robust-6

ness towards model architecture and training procedure.7

Thanks to this robustness, the domain of image generation8

has shown remarkable results in both quality and variety.9

While the recent diffusion models focus on the problem10

domain of generating images, we would like to utilize dif-11

fusion on sound waves. In this paper, we propose a method12

to continuously expand the Waveform domain as a way to13

mimic autoregressive behavior, and a novel sampling pro-14

cedure that aims to create a harmonizing result.15

1. INTRODUCTION16

In recent years, generative modeling has taken center stage17

across a multitude of scientific domains, eliciting notewor-18

thy contributions in the fields of natural language process-19

ing [4] and image synthesis [1]. The success in these fields20

has culminated in generative outputs that approach human-21

like quality, indiscernible to the untrained eyes or ears. De-22

spite these achievements, music synthesis remains a rela-23

tively under-explored area within the generative modeling24

landscape. This deficit is primarily attributable to the in-25

herent complexities associated with music data. Specif-26

ically, musical compositions not only comprise long se-27

quential structures but are also replete with intricate fre-28

quency spectra [5]. Consequently, raw music data in the29

waveform domain manifests as exceedingly dense infor-30

mational entities.31

Moreover, the challenges associated with music synthe-32

sis are further exacerbated by its compositional versatil-33

ity. Unlike images, which are generally synthesized from34

a restricted palette of colors, music is born out of a rich35

tapestry of instrumental timbres and voices, each contribut-36

ing its own unique qualities. This multiplicity of input vari-37

ables presents a complex landscape for the task of effec-38

tively modeling the underlying data distribution, rendering39

it a compelling yet formidable research challenge.40

Given the foundational commonalities between image41

and music synthesis—where the primary elements of im-42

ages are colors, and in music, it is the fundamental fre-43

quency, denoted as f0—we posit that advances in image44

synthesis techniques may be ported to the domain of mu-45

sic synthesis. To investigate this hypothesis, we turn our46

focus to diffusion techniques, which have demonstrated47

both simplicity and robustness in their capacity to model48

complex data distributions in various domains. However,49

the direct transposition of Denoising Diffusion Probabilis-50

tic Models (DDPM) to the domain of music synthesis is51

not without its challenges. Notably, the inherently non-52

autoregressive nature of conventional DDPM algorithms53

imposes a constraint of fixed sequence length on the gener-54

ated output. While such limitations may be inconsequen-55

tial within the context of image synthesis, they constitute56

a significant bottleneck for musical compositions, which57

frequently necessitate variable-length sequences.58

In light of these challenges, the primary objective of59

this study is to develop a methodology that allows for au-60

toregressive sequence inference within the diffusion frame-61

work. To this end, We proposed the use of image in-62

painting techniques as the inference method to mimic the63

behavior similar to that of an autoregressive model. We64

also modified the original Repaint [6] technique in favor65

of an algorithm that significantly reduces the reverse steps66

needed. In doing so, we anticipate broadening the potential67

applicability of DDPM techniques in the sphere of music68

synthesis, thereby filling an existing gap in the literature.69

2. RELATED WORK70

2.1 Neural Audio Synthesis71

Over the course of recent years, the field of neural audio72

synthesis has undergone significant advancements. One of73

the earliest breakthroughs was Wavenet [7], as it showed74

an impressive result in generating audio sequences. It em-75

ployed an autoregressive architecture to facilitate the di-76

rect sampling of audio sequences within the waveform do-77

main, albeit at a computational cost. Subsequent work in78

the form of Vector Quantized - Variational Auto Encoder79

(VQ-VAE) [8] took a similar approach. Instead of di-80

rectly generating new samples, VQ-VAE compresses raw81

waveform data into a quantized codebook, which is sub-82

sequently decoded using WaveNet. On the other hand,83

HiFi-GAN [9] and Rifffusion [10], both of which rely on84

Mel-spectrogram conditioning as opposed to raw wave-85

form data, have also demonstrated impressive results.86

Nevertheless, conditioning upon the Mel-Spectrogram87

entails a loss of information relative to the original data dis-88

tribution, thereby introducing a degree of imprecision dur-89



ing the generative process. Recent methodologies [11,12],90

have attempted to address this issue by compressing the91

raw audio data into a latent space, conditioned by an au-92

toregressive decoder to yield high-fidelity audio outputs.93

Distinctively, these models utilize a cascaded form of94

residual quantized codebook, thereby facilitating a more95

accurate discrete representation compared to predecessor96

models like VQ-VAE [8].97

2.2 Diffusion98

Diffusion models [1] present several advantages over ad-99

versarial methodologies, particularly in terms of their100

straightforward L2 loss objective function and the stability101

of their training regime, making them well-suited for appli-102

cations in image synthesis [13,14]. For instance, DiffWave103

[15] leverages diffusion-based techniques and adapts them104

to a custom vocoder architecture. Extensions of this model,105

such as PriorGrad [16] further refine the DiffWave [15] by106

introducing a better noise distribution. Instead of the stan-107

dard Gaussian noise, the author extracts the energy of the108

conditioned Mel-Spectrogram and adopts the prior noise109

distribution to the target audio. WaveGrad [17] is similar110

but instead of the discrete noise level, it is conditioned on111

the continuous noise level. Hierarchical diffusion model112

for singing voice generation [18] on the other hand, ex-113

tends PriorGrad [16] in a cascade diffusion style, where114

the several diffusion models are combined together. The115

base model learns the low sample representation and the116

latter models learn to upscale the input. Such a process117

is inspired by the super-resolution cascade technique [19],118

which generates sample at high fidelity. A more recent119

approach in producing high-quality sample is first to com-120

press the data into a latent representation, after applying121

the diffusion process, it is decoded back into the original122

data domain. This was first used by latent diffusion [14]123

for image synthesis, and forms the very idea of multi-band124

diffusion [20] for music synthesis.125

Even though autoencoder-based architectures are inher-126

ently non-autoregressive, there have been concerted efforts127

to apply diffusion techniques in an autoregressive frame-128

work. TimeGrad [21] seeks to tackle time-series fore-129

casting challenges using DDPM and incorporates a RNN130

[22, 23] to encode prior window information for condi-131

tional diffusion. This autoregressive adaptation of diffu-132

sion is particularly pertinent in the realm of video genera-133

tion, which inherently consists of temporally-linked image134

sequences. Residual Video Diffusion [24] improved the135

TimeGrad approach [21] by generating a residual to a de-136

terministic next-frame prediction.137

3. METHOD138

3.1 DDPM139

At a very high level, the diffusion model samples noises140

from a Gaussian distribution and add these noises to the141

original data. After sufficient number of steps, the data be-142

comes pure noise. Then, the model tries to learn how to re-143

move the noises to reconstruct the original data. More for-144

mally, it is a two-step process where the data distribution145

is first gradually destroyed by adding Gaussian noise, and146

later gradually denoised by removing the predicted noise.147

The noising process, or forward diffusion process is just148

a simple Markov process:149

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (1)

q(xt|xt−1) = N (xt|
√

1− βtxt−1, βtI) (2)

Here, βt is a fixed variance schedule with βt ∈ (0, 1).150

However, since the normal distribution can be parameter-151

ized as z = µ + σϵ, where ϵ ∼ N (0, I), the result of the152

Markov process at any timestep t can be calculated in a153

single step. let α = 1− βt and α̂ =
∏T

t=1 αt, we derive:154

√
1− βtxt−1 +

√
βtϵ (3)

√
αtxt−1 +

√
1− αtϵ (4)

√
αtαt−1xt−2 +

√
1− αtαt−1ϵ (5)

√
αtαt−1αt−2xt−3 +

√
1− αtαt−1αt−2ϵ (6)

...
√
αtαt−1 . . . α1α0x0 +

√
1− αtαt−1 . . . α1α0ϵ (7)

xt =
√
α̂tx0 +

√
1− α̂tϵ, ϵ ∼ N (0, I) (8)

The denoising process, or reverse diffusion process can155

be thought of as approximating the posterior of the diffu-156

sion process, which can be expressed as follows:157

pθ(x0:T ) = pθ(xT )

T∏
t=1

pθ(xt−1|xt) (9)

pθ(xt−1|xt) = N (xt−1|µθ(xt, t), γI) (10)

Since the forward procedure is fixed, we are only in-158

terested in learning the parameterized pθ(xt−1|xt). Our159

parameter θ can be optimized by maximizing the evidence160

lower bound (ELBO) [25].161

logp(x) = log Eq[
p(x0:T )

q(x1:T |x0)
] (11)

logp(x) = Eq[logpθ(x0|x1)]

−DKL(q(xT |x0)||(xT ))

−
T∑

t=2

Eq[DKL(q(xt−1|xt, x0)||pθ(xt−1|xt)]

(12)

Note that deriving (12) from (11) requires us to rewrite162

the encoder transitions as q(xt|tt−1) = q(xt|xt−1, x0),163

this can intuitively be understood as knowing the origi-164

nal data distribution helps lowering the variance during our165

Monte Carlo estimation. However, rewriting does not af-166

fect the result of the Monte Carlo estimation since the extra167



term is superfluous under the Markov property. Given (12),168

Ho et al. [1] claims that optimizing the last KL-divergence169

only is sufficient for the model to converge. Therefore, our170

objective function can be written as171

argmin
1

2σ2
q (t)

α̂t−1(1− at)
2

(1− α̂t)2
[||x̂θ(xt, t)− x0||22] (13)

In the original experiment, Ho et al. [1] found out that172

ignoring the scaling terms at the front of the L2 loss leads173

to better training results, therefore our final objective be-174

comes a simple L2 loss. In the original paper [1], Ho et al.175

used another loss function ||ϵ̂θ(xt, t) − ϵ||22 that optimizes176

for the noise difference. This interpolation is equivalent to177

the above equation along with score matching interpolation178

||sθ(xt, t−∇logp(xt))||22 [25, 26].179

3.2 Pesudo Autoregressive Inference180

Recall that an autoregressive model predicts the probabil-181

ity of a subsequent token based on its predecessors. In182

other words, this model uses accumulated historical data183

to forecast the next token or sample. This process is math-184

ematically expressed as:185

logp(x) =

D∏
i=1

p(xi|x<i) (14)

Therefore, in replicating this autoregressive approach,186

our inference model must incorporate spatial dependen-187

cies in its predictions. We selected Diffwave [15] for188

this purpose due to its structural similarities with WaveNet189

[7]. Diffwave, adapting WaveNet’s architecture, effec-190

tively captures temporal information during the generation191

process. However, this sequence creation is confined to in-192

dividual generations, resetting with each new generation.193

As a result, each sampling instance in Diffwave [15] disre-194

gards previous generations.195

Our goal, then, is not simply to generate new samples196

using Diffwave [15], but rather to extend the generated197

audio, imitating the autoregressive model’s functionality.198

The objective is to create extended audio data datanew199

of length D, building upon existing audio dataknown of200

shorter length B. This approach can be conceptualized as201

predicting datanew based on dataknown202

logp(datanew) = p(datanew|dataknown) (15)

It’s important to note that Diffwave’s maximum gener-203

ation capacity is D, aligning with the maximal context and204

generation length of a traditional autoregressive model. To205

circumvent the limitation of generation length inherent in206

autoencoder models, we can create longer final audio data207

by stacking multiple generated "frames," as illustrated in208

Figure 1.209

Figure 1. Stacking of audio frames

3.3 Image Inpainting and Resampling210

Extending audio sequences can be understood as an audio211

inpainting problem. Here, our objective is to predict an212

unknown audio segment of size D - B. Drawing inspiration213

from RePaint [6], we approach this using diffusion models:214

xknown
t−1 ∼ N (

√
α̂tx0, (1− α̂t)I) (16)

xunknown
t−1 ∼ N (x̂θ(x

new
t , t), βI) (17)

xnew
t−1 = xknown

t−1 + (D −B)⊙ xunknown
t−1 (18)

In these equations, The + indicates the concatenation215

of two 1-D matrices, while ⊙ signifies the selection of a216

length segment. Since the diffusion reverse step from xt217

to xt−1 relies solely on xt, we modify the reverse process218

at each time step t by incorporating the known region, en-219

suring that xnew includes the conditional information from220

xknown.221

A significant challenge with this method is achieving222

harmony between xknown and xunknown in the resulting223

xnew. While the diffusion model x̂θ attempts to harmonize224

the overall data distribution at each time step, it struggles225

to produce a consistent harmonized distribution across t,226

due to:227

1. The sampling of xnew excludes the B⊙xunkown re-228

gion, leading to a loss of crucial information in each229

reverse step.230

2. The diminishing β value during the diffusion pro-231

cess limits the model’s ability to introduce signifi-232

cant changes to the latent distribution at lower t val-233

ues.234

The original RePaint [6] paper addressed this by adding235

extra steps for harmonization. Specifically, it re-noises236

xnew
t ∼ N (

√
1− βtxt−1, βtI) essentially allowing the237

model to backtrack in the diffusion process. This back-238

tracking provides the opportunity to find a new path that239

better integrates the generated and unknown distributions.240

However, this solution significantly extends the diffusion241

process duration, as it requires multiple of t steps to com-242

plete due to the backtracking operation.243



Figure 2. Reverse Lambda schedule. At the final step,
lambda must equal 1 to avoid generating a x0 that is a mix
of xknown and xunknown.

3.4 Interpolation Guidance and Reverse Lamdba244

Schedule245

Addressing the harmonization issue in audio inpainting ne-246

cessitates tackling the two identified challenges. Firstly,247

rather than discarding the B ⊙ xunknown
t−1 segment, we248

should integrate it with the xknown region. This integra-249

tion can be achieved through interpolation [1], as defined250

by xcombined = λxunknown + (1 − λ)xknown. Although251

one might think that adding xknown and xunknown di-252

rectly would be intuitive; such an operation would incur253

numeric blowup, therefore an interpolation scale is needed254

to ensure the latent blend is within a numeric bound.255

The blend of xunknown and xknown still influences the256

(D−B)⊙xunknown
t−1 region, given Diffwave’s reliance on257

temporal dependencies during generation, meaning later258

parts are generated considering this mixture.259

The interpolation creates a latent distribution that is in-260

termediate between xunknown and xknown. To ensure the261

final x0 accurately reflects xknown, we ultimately wanted262

an extreme instead of a mix. We’ve designed our λ sched-263

ule as an exponential function (shown in fig 2, eq 19) that264

converges to 1 as t nears 0, tailored specifically for 200265

steps in the diffusion process. This choice is driven by266

the fact that most denoising activity occurs at lower t val-267

ues [15], necessitating more dramatic changes for effective268

latent shaping 1 .269

Initially, it seemed logical to increase λ for xknown as270

t approached 0, ensuring the diffused x0 matches the dif-271

fused xknown
0 . However, this approach did not resolve the272

unharmonized (D − B) ⊙ xunknown issue due to the di-273

minishing β problem (issue 2). This problem implies that274

when xknown significantly influences the latent space, the275

model is restricted in its ability to effect changes. Coun-276

terintuitively, by inverting the λ value, we found that the277

final data distribution still aligns with xknown. We hypoth-278

esize that the denoising process at a high t value aims to279

1 Indeed, we found that using a linear schedule results in a worse re-
constructing quality

Figure 3. Kolmogorov-Smirnov Test for different methods
against the original at different t, higher the better.

create a uniformed noised distribution, which at a lower t280

value it aims to denoise the said distribution. Therefore,281

by incorporating a high value of xknown in the early steps,282

we direct xcombined to target an outcome incorporating283

xknown’s distribution. The later steps can then focus on284

harmonization and denoising.285

λ =

{
1, if t = 0

INV ERSE(0.3704e0.5t − 1)4, otherwise
(19)

xcombined
t−1 = (1− λ)xknown

t−1 + λ(B ⊙ xunknown
t−1 ) (20)

xnew
t−1 = xcombined

t−1 + (D −B)⊙ xunknown
t−1 (21)

4. EXPERIMENT286

4.1 Model setup and training287

For our project, we configured Diffwave [15] following the288

original architecture proposed by the authors. This setup289

included 30 residual layers and a maximum of 64 resid-290

ual channels. Although Diffwave is capable of condition-291

ing on Mel-Spectrograms during both training and infer-292

ence, we decided not to use this feature. Our focus was on293

generating raw waveforms through diffusion, making Mel-294

Spectrogram conditioning unnecessary for this project.295

Our dataset was sourced from Kaggle and comprised 14296

monophonic piano sounds of varying lengths. The audio297

files were sampled at 22.05 KHz, and the total duration of298

the dataset amounted to 1,217 seconds or approximately299

20.283 minutes.300

During the training phase, we randomly selected four301

5-second audio clips (’snapshots’) for each training step,302

feeding these into Diffwave. The training process extended303

over approximately 730,000 steps, and we observed the fi-304

nal L2 loss stabilizing around 0.03. The entire training du-305

ration was roughly 14 days, conducted on a single A5000306

GPU with a 24 Gb memory capacity.307



Figure 4. Wavform representation for x at t = 25, from
top to bottom: our Method, do-nothing, and Repaint. The
abscissa is in seconds

Figure 5. Wavform representation for x at t = 0, from top
to bottom: original, our Method, do-nothing, and Repaint.
The area beyond the redline is the generated content.

4.2 Comparision Study308

Given the subjective nature of music and the constraints of309

our resources, we approached the evaluation of interpola-310

tion guidance empirically. In our experiment, we tasked311

various algorithms with reconstructing a 5-second audio312

segment, using a 4-second window as a reference. We313

compared our algorithm’s performance against both a Re-314

sampling method (with jumping and backtrack length of315

10) and a do-nothing baseline (eq 16-18), focusing on the316

output sequence and the denoising history.317

Our method consistently produced a uniform noise dis-318

tribution throughout the denoising process, particularly no-319

ticeable at t = 25. In these instances, the distinction be-320

tween the generated and reference segments was minimal.321

Numeric analysis using Kolmogorov-Smirnov Test shows322

that our method has a higher similarity to xknown as shown323

in fig 3. This uniformity contributed to a more harmonized324

final output, as evident in x0. As shown in fig 5, the im-325

pulse shape closely mirrors the original audio relative to326

other methods.327

We extended our analysis by generating three different328

8-second audio segments from 5-second starting points us-329

ing various methods. We chose an 8-second duration as it330

is sufficiently long to demonstrate melodic structure while331

short enough for Diffwave to maintain reference to the332

original audio. To validate the coherence and superiority333

of our method’s tempo, we conducted a pitch analysis us-334

ing the Yin algorithm [27], with results presented in fig 6.335

Figure 6. Pitch analysis of 8-second audio generated us-
ing different algorithms. Abscissa is in seconds. Anything
Beyond 5 seconds are generated parts which are marked
square marker. The right-hand sides are the generated parts
using baseline and Repaint (top to bottom)

Visually inspecting, the pitch structure of the audio gener-336

ated by our method yields a rather organized shape when337

compared to others.338

5. DISCUSSION339

While our studies have shown promising results in com-340

parison to other audio extension methods, they do not con-341

clusively prove the effectiveness of our approach. In an342

ideal scenario, we would assess our method using subjec-343

tive metrics like the Mean Opinion Score (MOS). How-344

ever, due to resource limitations, conducting such a study345

is currently beyond our scope. Additionally, our hard-346

ware and time constraints mean that our custom-trained347

Diffwave model cannot perfectly reconstruct tempo and348

melody. Presently, it produces sounds resembling piano349

music, but lacks organized musical notes. This limitation350

complicates our comparative studies, challenging our abil-351

ity to produce meaningful, unbiased results. We cannot352

simply regenerate outputs until one method yields a satis-353

factory x0.354

Therefore, all algorithms start the generation using the355

same random distribution. The result of the algorithm yield356

is solely based on the diffusion process rather than good357

base distribution (some quality is better because it started358

with a better random distribution). This approach helps to359

mitigate biases and provides a more equitable comparison360

framework.361

Furthermore, our method’s reliance on the temporal de-362

pendency inherent in Diffwave raises questions about its363

applicability beyond music synthesis or even outside of364

this specific architectural model. Although insusceptible365

to the human ears, our reconstruct xknown is not perfect.366

It is unsure that such differences would be more noticeable367

in other problem domains, therefore, The potential for In-368

terpolation Guidance is uncertain. We leave this area open369

for future exploration and encourage readers to investigate370

these possibilities further.371



6. CONCLUSION372

We presented a pseudo auto-regressive inferencing tech-373

nique for the diffusion model. In particular, we proposed374

a novel algorithm that performs audio extension at a frac-375

tion of the time compared to that of Repaint [6] while still376

yielding comparable if not superior results. Because we377

utilize the special architecture of Diffwave, our methods378

produced a favorable result in our empirical studies.379
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