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Introduction

Voice Conversion: altering the style of a speech signal while preserving its linguistic content
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Introduction

What Voice Conversion has achieved: high quality, naturalness

What current Voice Conversion systems lacked: feature disentanglement (speaker
information leakage), controllability (e.g. prosody & speed), fast inference in
real-time streaming scenarios (calls and video conferencing, voice anonymization)




Problem Formation

Any-to-any streaming voice conversion system

During inference, the speaker embedding is extracted from the whole utterance,
the content is obtained chunk-wise. the model takes a series of chunks of input

speech and generate converted chunks
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Non-Streaming VS Streaming

Directly applying non-streaming system to streaming scenarios:

- Noticeable artifacts
- Less Natural
- Lack of coherency among output chunks

Missing future information



Previous Works

Intermediate Bottleneck Features (IBF) instead of Phonetic Posteriorgrams (PPG)
to get more low-level information & Non-streaming teacher guidance
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Chen, Yuanzhe, et al. "Streaming voice conversion via intermediate bottleneck features and non-streaming teacher guidance." ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). |IEEE, 2023.



Previous Works

Hybrid Predictive Coding (HPC) to capture common feature structure & Teacher
Guidance (Dual Mode)
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Figure 1: The architecture of DualVC

Ning, Zigian, et al. "Dualvc: Dual-mode voice conversion using intra-model knowledge distillation and hybrid predictive coding." arXiv preprint
arXiv:2305.12425 (2023).



Framework

VITS-based Model + Light-weight Decoder — Fast Inference (but not for
streaming scenarios)
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Cao, Danyang, Zeyi Zhang, and Jinyuan Zhang. "NeuralVC: Any-to-Any Voice Conversion Using Neural Networks Decoder For Real-Time Voice
Conversion." IEEE Signal Processing Letters (2024).



Lookahead Loss

Adopted From StreamVC
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Yang, Yang, et al. "StreamVC: Real-Time Low-Latency Voice Conversion." ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2024.



Training Settings

Chunk size = 3200 samples (200ms under 16k sample rate), 25% ratio of overlap between chunks
Non-causal Module (convolution) — Causal Module
VCTK Dataset (110 English speakers)

Reconstruction instead of conversion (lack of parallel data)
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Results

Table 1. Non-streaming inference for different training
settings.

Table 3. Streaming performance with different inference
settings.

Training Settings Inference Time Similarity WER

Chunk Size, Overlap Ratio, Buffer RTF Similarity WER

Whole 0.1384 0.7839  0.0336
Chunk 0.1277 0.7502  0.133
Chunk+Lookahead 0.1342 0.7404  0.4344

Table 2. Streaming inference for different training set-

tings.
Training Settings ~ RTF  Similarity WER
Whole 0.4943 0.7371 0.6298
Chunk 0.3584 0.7644 0.2686
Chunk+Lookahead 0.3629 0.7253  0.6074

3200, 0, True 0.3644 0.7529 0.3719
3200, 0, False 0.178 0.7851 0.4269
3200, 25%, True 0.3584 0.7644 0.2686
3200, 25%, False 0.3492 0.7842 0.3553
3200, 12.5%, True 0.3282 0.7632 0.3072
320, 25%, True 2706 0.5079 1.009




Results

Samples
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Conclusion & Future Work

- Whole utterance training - degrade performance in streaming scenarios —
chunk-wise training

- Processing extremely short chunks (e.g., 20ms) is hard to maintain
intelligibility and temporal consistency
- One model for variable-length chunk input



Thanks !



