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ABSTRACT

Voice conversion systems have recently achieved impres-
sive results in non-streaming scenarios, but their applica-
tion to real-time settings remains challenging. This pa-
per explores different training schemes for streaming voice
conversion, with a particular focus on chunk-wise process-
ing and temporal consistency. We demonstrate that train-
ing on chunked audio input can improve the performance
in streaming scenarios compared to training on complete
utterances. We also analyze the impact of various infer-
ence parameters, including chunk size and overlap ratio,
on system performance.

1. INTRODUCTION

Voice conversion (VC), which aims to transform the
speaker identity of a source utterance while preserving its
linguistic content, has witnessed remarkable progress in re-
cent years. Existing VC systems primarily focus on con-
verting the timbre and style of the source speaker to those
of a target speaker [1]. While non-streaming voice conver-
sion approaches have achieved impressive performance in
both speech quality and speaker similarity [2,3], with some
systems achieving fast inference speeds in offline scenar-
ios [4–6], they are insufficient for emerging real-time ap-
plications.

The growing demand for real-time voice conversion in
applications such as live broadcasting, video conferencing,
and real-time communication systems (RTC) necessitates
streaming solutions. This need is further amplified by the
increasing importance of voice anonymization for protect-
ing speaker identity against potential attacks. However,
simply applying non-streaming voice conversion systems
trained on whole sentences to streaming scenarios leads
to significant performance degradation, resulting in poor
audio quality, noticeable artifacts, and lack of coherency
between output chunks, but most of the works still focus
on training whole utterances. Streaming voice conversion
systems, which process speech in a chunk-wise manner
with minimal latency, face unique challenges, particularly
at the onset where the model has limited context about the
linguistic content. These systems must maintain tempo-
ral consistency across variable-length chunks while ensur-
ing seamless transitions, all while operating under strict la-
tency constraints. Current methods often struggle to match
the quality of non-streaming systems, especially in main-
taining speaker consistency and speech naturalness across

chunk boundaries. These challenges highlight the need for
specialized training schemes and loss functions that explic-
itly account for the streaming nature of the task.

We conduct comparative analyses of different train-
ing and inference settings, including the adaptation of the
lookahead loss proposed in [7]. Our experiments demon-
strate that it’s necessary to adjust training schemes for this
task to preserve the continuity and the quality of the con-
verted speech.

The rest of the paper is organized as follows. We start
by reviewing related works on streaming voice conversion
in Section 2. In Section 3, we outline the non-streaming
framework we adopted. In Section 4, we introduce the
dataset, training settings, metrics and present our experi-
mental results to evaluate our algorithm. Finally, we con-
clude in Section 5 and offer directions and insight for fu-
ture work.

2. RELATED WORKS

Voice conversion systems have predominantly adopted an
encoder-decoder architecture, where content information
is obtained through various means. One approach utilizes
Automatic Speech Recognition (ASR) systems to obtain
features such as Phonetic Posteriorgrams (PPG) [8, 9] and
Intermediate Bottleneck Features (IBF) [10] which are ex-
tracted from the last layer and the intermediate layers of
the ASR Encoder respectively. Another approach lever-
ages self-supervised representations like HUBERT [4, 6].
The timbre information is extract by a speaker encoder,
which is either trained during the process or directly use
a pre-trained model. The decoder typically follows either
a Codec architecture, such as SoundStream [11] and En-
codec [12], or employs vocoders like Hifi-GAN [13] to
convert the latent representations directly to audio or spec-
trograms [7, 14].

Streaming voice conversion presents unique challenges
due to the absence of future audio information, which can
impact the coherence and quality of the generated out-
put. Previous works have addressed this problem in dif-
ferent ways. Chen et al. [10] and Ning et al. [15, 16] ap-
plied teacher guidance to the system. Specifically, Chen
et al. [10] employed a non-streaming teacher to generate
the parallel data so that the student can learn to convert
voice rather than reconstruct the original source audio dur-
ing training, and Ning et al. [15,16] developed a dual-mode
system that performs both non-streaming and streaming



voice conversion, with the non-streaming mode providing
representational guidance to the streaming mode. They
also proposed the Hybrid Predictive Coding (HPC) method
which combines 2 losses from CPC [17] and Autoregres-
sive Predictive Coding (APC) [18] to predict the future
information through unsupervised representation learning.
More recent approaches include Wang et al.’s [19] use of
context-aware language models for teacher-guided context
foresight, and Ning et al.’s [20] implementation of lan-
guage models to generate pseudo-context, effectively in-
creasing the input chunk size and reducing the system’s
dependence on large chunk sizes.

3. METHOD

Our system builds upon NeuralVC [6], a fast infer-
ence non-streaming voice conversion framework based on
VITS [21]. We adapted this architecture for streaming sce-
narios by exploring various training schemes and imple-
menting a 2-frame lookahead loss to maintain chunk con-
sistency through better utilization of historical information.

3.1 NeuralVC System

The NeuralVC architecture consists of three main compo-
nents: a prior encoder, a speaker encoder, and a neural
decoder. The prior encoder consists of HuBERT [22], a
content encoder, and a normalization flow. The HuBERT
module takes audio as input and extracts 256-dimension
Hubert features, which are the information of the speech
content. Then the content encoder learns the prior distribu-
tion N (z′;µθ, σ

2
θ). The Flow model is conditioned on the

speaker embedding g and is set to output a more complex
distribution to enhance the complexity the model learns.
Another benefit of Flow is that it is revertible, meaning
that we can compute the loss on the content encoder out-
put side. After the prior encoder module, we can get a
compact linguistic feature z. We use a pre-trained speaker
encoder which is a speaker verification model trained on
a large amount of speakers. We can directly extract 256-
dimensional speaker embedding by feeding the source au-
dio to the speaker encoder. The neural decoder takes the in-
put of the linguistic feature z and the speaker embedding g
and directly generates the waveform rather than generating
the spectrogram and using vocoders such as Hifi-GAN [13]
to convert the spectrogram to audio. The decoder is based
on the SEANet architecture from Encodec [12], enhanced
with two additional one-dimensional convolutional layers
to better process the combined speaker and content la-
tent representations. Their experiment shows that this de-
sign improves speaker similarity and increases inference
speed, while performing better than Hifi-GAN and MS-
iSTFT [4].

3.2 NeuralVC Losses

The overall loss is denoted as:

LG = Lrec + Lkl + Ladv(G) + Lfm(G) + Lspk, (1)

Figure 1. Training and inference procedure of NeuralVC
from [6].

LD = Ladv(D), (2)

where the reconstruction loss computes the L1 loss be-
tween the predicted and target mel-spectrogram:

Lrecon = ∥xmel − x̂mel∥1; (3)

the kl loss Lkl is the KL divergence between the prior dis-
tribution ptheta(z|c) = N(z;µϕ, σ

2
ϕ) and the posterior dis-

tribution qθ(z|xlin) = N(z′;µθ, σ
2
θ)|det ∂z′

∂z |; the adver-
sarial loss is the generator loss in the GAN formulation,

Ladv(G) = E(z,g)[(D(G(z, g))− 1)2], (4)

Ladv(D) = E(y,z,g)[(D(y)− 1)2 + (D(G(z, g)))2], (5)

where y is the ground truth waveform, z is the linguistic
latent, g is the speaker latent. We refer D as the multi pe-
riod discriminator and G as the neural decoder; the feature
matching loss is proposed in [23], which is added as a re-
construction loss in the hidden layers to further improve
the performance of adversarial training:

Lfm(G) = E(y,z,g)

[
T∑

L=1

1

Nl
∥Dl(y)−Dl(G(z, g))∥

]
,

(6)

where T is the number of layers in the discriminator and
Dl gives the features map of the l-th layer with Nl num-
ber of features. The speaker loss is the speaker consistency
loss, which measures the L1 distance of the speaker em-
bedding of the generated speech and the input speech.

3.3 Lookahead Loss

We adopted the 2-frame lookahead loss computation from
StreamVC [7]. In their work, they paired the output frame
of the t-th time step ot with the input frame of (t − 2)-th
time step st−2 rather than the current input frame st. This
design serves two purposes: it enables the model to bet-
ter leverage historical information and provides additional
time for accumulating sufficient linguistic content before
generating the initial output. Specifically, the model be-
gins output generation only after receiving the third chunk
of input, effectively providing a two-chunk buffer period
for processing.



Figure 2. Lookahead loss from [6].

4. EXPERIMENTS

4.1 Dataset

We used VCTK [24] as the dataset for training and testing.
It includes 44 hours of clean speech audio uttered by 110
English speakers with various accents. All the recordings
are 16kHz sample rate. We follow the NeuralVC prepro-
cessing step to divide the whole datasets. For each speaker,
2 of the utterances are used for validation, 10 of the ut-
terances are used for testing, and the others are used for
training.

4.2 Training Settings

We used the soft speech version of HuBERT [25] instead
of the discrete version, which can learn more speaker inde-
pendent information and preserve content information as
much as possible because the space of speech sounds is
not discrete, thus increase intelligibility. We replaced all
the non-causal convolution blocks to causal ones, and also
provided buffers for each convolutional layer in the frame-
work for use in inference.

For training data, we prepared overlapped chunks of
3200 samples (200ms) with the overlap ratio of 25%. The
overlapping part can give the model context information
in chunk-wise inference. Since it takes a long time for
the model to train from scratch, due to time limit of the
project, we fine-tuned the model on the pre-trained Neu-
ralVC model on the same dataset but with shorter segments
to improve its performance in streaming scenarios. For the
2-frame lookahead loss, as they are using short chunks of
20ms, the loss is equivalent to 2-chunk lookahead loss.

During fine-tuning, we used the AdamW optimizer with
the learning rate of 2−6, β1 = 0.8 and β2 = 0.99, batch
size of 20. We assigned the weight of the reconstruction
loss to be 45 and other weights to be 1 following the Neu-
ralVC configuration to focus more on the reconstruction
part during training. For the chunk-wise output genera-
tion, given that the output dimension matches the input
dimension, we implemented direct concatenation of pre-

vious outputs with the non-overlapping segments of the
current output, which means that the overlapping regions
serve solely to provide contextual information to the model
without directly influencing the final output structure.

4.3 Metrics

We used 3 metrics to evaluate the performance. The first
is Real-time Factor (RTF), which is a metric for measur-
ing the speed of a speech processing system in the infer-
ence time. We followed the implementation of Quamer et
al. [26]. The second one is speaker similarity, which is a
metric to measure the speaker similarity between the tar-
get speech and the generated speech. We follow [4] and
use Resemblyzer 1 voice encoder to get the speaker em-
bedding and compare them. The third one is Word Error
Rate (WER) which is originally designed for ASR tasks,
we can also use it here to transcribe the generated speech
to check the word error. We use jiwer 2 package to imple-
ment the WER computation.

4.4 Experiment Results

Table 1 shows the 3 different settings on the non-streaming
scenario. We didn’t train the model using chunks as input
and adopted the lookahead loss to convergence. As there is
no chunk-wise inference in the process, we can only com-
pute the inference time instead of RTF. We can see that af-
ter fine-tuning on chunks, the real-time factor is compara-
ble, but the speaker similarity and WER is slightly worse,
due to the fact that it is seeing less context compared to
training on the whole utterance. Table 2 shows the experi-
mental result of streaming inference with the configuration
of 3200 of chunk size, 25% of overlapping ratio (800 of
chunk overlap) and using ring buffer for inference. We can
see that the RTF for training on whole utterance is higher.
The second row shows that training and inference on the
same length of data can provide increase of performance
on the speaker similarity of WER. The third training set-
ting may have similar effects after training of convergence,
but since we are fine-tuning the original model trained on
whole utterance, the 2-frame difference may confuse the
model. We also explored different inference settings in-
cluding the chunk size, overlap ratio and buffer usage,
which is shown in table 3. From the comparison we can
see that using the buffer inside the model cam improve the
WER, regardless of the overlap ratio, but when the overlap
ratio decreases, the WER will slightly decrease. In addi-
tion, using the same inference setting as the training setting
gives the best WER score, and when the segment size is
smaller, it takes longer to inference, and the audio is more
discontinuous, leading to low speaker similarity score and
high WER.

We also show an example of the streaming voice con-
version result shown in fig. 3, the first row is the result of
whole utterance inference, the second row is the result of
chunk-wise inference. The 3 columns from the left to the

1 https://github.com/resemble-ai/Resemblyzer
2 https://github.com/jitsi/jiwer

https://github.com/resemble-ai/Resemblyzer
https://github.com/jitsi/jiwer


right is 3 different strategies on training on whole utter-
ances, chunked audio, and chunked audio using lookahead
loss.

Table 1. Non-streaming inference for different training
settings.

Training Settings Inference Time Similarity WER

Whole 0.1384 0.7839 0.0336
Chunk 0.1277 0.7502 0.133

Chunk+Lookahead 0.1342 0.7404 0.4344

Table 2. Streaming inference for different training set-
tings.

Training Settings RTF Similarity WER

Whole 0.4943 0.7371 0.6298
Chunk 0.3584 0.7644 0.2686

Chunk+Lookahead 0.3629 0.7253 0.6074

Table 3. Streaming performance with different inference
settings.
Chunk Size, Overlap Ratio, Buffer RTF Similarity WER

3200, 0, True 0.3644 0.7529 0.3719
3200, 0, False 0.178 0.7851 0.4269

3200, 25%, True 0.3584 0.7644 0.2686
3200, 25%, False 0.3492 0.7842 0.3553

3200, 12.5%, True 0.3282 0.7632 0.3072
320, 25%, True 2.706 0.5079 1.009

5. CONCLUSION

In this paper we show that the training scheme is important
for streaming voice conversion. While models trained on
complete utterances show degraded performance when ap-
plied to streaming scenarios, we found that fine-tuning on
chunked audio input significantly improves their effective-
ness. Future work will focus on maintaining intelligibility
and temporal consistency when processing extremely short
chunks (e.g., 20ms), which is crucial for real-time applica-
tions. This advancement would represent a significant step
toward robust, real-time voice conversion systems.
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