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ABSTRACT

The purpose of this reproduction is to check the
effectiveness of Temporal Convolutional Networks
(TCN) models on beat tracking tasks. The paper
reproduced is Temporal Convolutional Networks for
Musical Audio Beat Tracking. Through the training
process, ease of training for this TCN model compared to
RNN based model is confirmed. In the reproduction
process, an environment was set up, training data and
targets were downloaded from github, pre-processing was
successfully carried out, training was nicely
implemented, but the model evaluation process was not
successful.

1. INTRODUCTION

The method for beat tracking reached the state of art
(SOTA) a long time ago. However, beat tracking lies as
the basis for Music information retrieval (MIR) tasks.
Beat tracking can provide structural insight for models
designed for beat related tasks. For example, chord
detection might use beat detection because the existence,
or onset, of the chord’s note can provide useful
information for recognising chords. For another example,
beat detection will be very useful when it comes to drum
beat generation for beatless music audio. The goal of this
reproduction is to test if TCN model accuracy is as good
as stated in the paper being reproduced.

2. ORIGINAL PAPER SUMMARY

In the paper, the SOTA method by using Bidirectional
Long Short-Term Memory is described to compare with
the method proposed by the paper. Take one audio date in
.wav format as input data, the audio input is
pre-processed and converted to mel-spectrogram in
numpy format. Three different mel-spectrograms are
generated, with hop size of 10ms, window sizes of 23.2
ms, 46.4 ms and 92.9 ms. Three mel-spectrograms are fed
to Three layers of BLSTM and the BLSTM generates a
beat activation function. Eventually the beat activation
function is sent to DBN approximated via hidden Markov
Model (HMM). The DBN used at the end is to better
track the position of the beat.

Fig. 1 contains the main processing pipeline for
both BLSTM model and model proposed by the paper.

The method proposed by the paper is similar to
that of the BLSTM method. For pro-processing, one
audio in .wav format is converted to mel-spectrogram.
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However, this time, only one mel-spectrogram, with hop
size of 10
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Fig. 1. Comparison between existing state of the art (left)
with our proposed approach (right). The neural network
blocks are shaded light grey, from [1].

ms, window size of 46.6 ms, is generated. The
mel-spectrogram is then fed to the Convolutional Block.
The structure of the Convolution Block is as follows: the
first two layers have 16 filters of size 3x3 with max
pooling over 3 bins in the frequency dimension; the third
layer has 16 filters of size 1x8 but this time without
pooling. The Exponential Linear Unit (ELU) is used as
the activation function in the Convolutional Block. ELU
used here is smoother than ReLU. Dropout rate is set to
0.1. Then comes the TCN Block. The TCN has only 1
stack, with dilations from 270 to 2°10, 16 filters, filter
size of 5, 0.1 dropout rate and ELU activation function.
Eventually, DBN is used to decode the beat activation
function and yields the final beat position result.

For the implementation part proposed by the
paper: as for training: Adam optimizer is used; learning
rate is set to 0.001, batch size is 1, sigmoid activation



function is used as the output function; binary
cross-entropy is used for loss function.

Table 1 contains all the signal processing and
learning parameters.

Signal Conditioning

Andio sample rate 44.1 kH=z
Window shape Hann
Window & FFT size 2048 samples
Hop size 10 ms
Filterbank freq. range 30.. . 1T000Hz
Sub-bands per octave 12
Total number of bands 51
Conv. Block

Number of filters 16, 16, 16
Filter size Ix33Ix3 1x8
Max. pooling size 1 =3, 1x3,
Dropout rate 0.1
Activation function ELU
TCN

Number of stacks 1
Dilations 20.---,10
Number of filters 16
Filter size 5
Spatial dropout rate 0.1
Activation function ELU
Training

Optimizer Adam
Learning rate 0.001
Batch size 1
Output activation function sigmoid

Loss function binary cross-entropy

TABLE I. OVERVIEW OF SIGNAL PROCESSING
AND LEARNING PARAMETERS, [1]

3. METHODOLOGY

Python3.12.4 is set up for the environment. Virtual
environment is supposed to be created for the
reproduction, default environment is used instead.
Librosa, madmom, mir-eval, numpy, and torch are all
installed into the environment. Installed Numpy version
is 1.26.4. The versions of Numpy and python are
specified because these two versions eventually cause the
failure to produce model evaluation.

Source codes are available from github:
https://github.com/ben-hayes/beat-tracking-tcn. All
source codes are cloned into local directories.

Here is the reproduction implementation.

Dataset: Ballroom dataset is used as the training
data. Ballroom dataset, now, contains 698 .wav files.
Ballroom dataset is available for downloading on the
UPF website. However, the dataset provided contains
only the audio data, which is the training data, and no
labels are contained. Tempo annotations are available for
download but tempo annotations should not be used in
the paper-proposed method. .beats file should be the

label, the real annotation file, used for ground truth.
Eventually, .beats annotation files are downloaded from
github: https://github.com/CPJKU/BallroomAnnotations.
pre-processing: all 698 audio files are converted
to mel-spectrogram by using librosa module. After
conversion, all mel-spectrograms, in format of .npy, as
training data, are stored in datasets/ballroom folder.

When the data is ready for training, run the
train.py file in VS Code terminal, with the training
dataset directory and label directory as input to the
train.py file. GPU, 3060 is used for training. However,
GPU is used not by specifying train.py’s input but by
directly modifying code in the train.py file. During
training, the task manager is open and the usage of the
GPU is confirmed by looking at the GPU usage. The
training process stops when the validation error does not
update for 50 epochs. The training process is terminated
at epoch 99. The model is then stored in a checkpoint file.

Model Evaluation: the model evaluation is not
successfully carried out because version incompatibility.
The evaluate model file is the one used for evaluation
which uses the madmom module. However the madmom
module requires a lower version of numpy. A method to
change all np.int and np.float into int and float is used but
it did not work out. Downgrade of numpy to version
1.19.5 is implemented but then comes the problem that
the lower version of numpy is not compatible with
python3.12.4. Downgrade of python to version python
3.8.16 is implemented, but because there is no installer
for python 3.8.16, the model evaluation part is counted as
failure.

4. RESULTS AND CONCLUSION

As a result, the data downloading, data loading, data
pre-processing, training process are all successfully
carried out. However, the model evaluation part is not
successfully carried out. In conclusion, the reproduction
is half successful.

5. FUTURE WORK

Python3.8 was tried to download from the official
website, but it is easily accessed in anaconda. make the
final model evaluation process successful, python3.8 will
be downloaded from anaconda and the downgrad will be
implemented. In addition, instead of using a local
environment, a virtual environment will be added to the
project file and activated during training. Hopefully
model evaluation will be successfully implemented after
successfully downgrading python and numpy.

Furthermore, 8 fold cross validation will be used
for the training data to improve training.
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