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ABSTRACT 

 
Automatic music transcription of the piano has been 
addressed by several researchers and has proven 
improvement in accuracy. Previous researchers 
achieved state-of-the-art results by employing 
Transformer architectures and treating the 
transcription task as a sequence-to-sequence 
prediction of events, mainly onsets and offsets of each 
of the 88 keys. However, the preceding study 
preliminarily builds upon offline predicting 
implementations, thus it is not practical to use in real-
time music performance. The present work discusses 
a potential streaming model for the piano AMT task, 
following the preceding study. Critical observation of 
the trade-off between the accuracy of the result and the 
latency of the processing is necessary for the 
discussion, and a desired product of the task must be 
pre-considered to determine the priority. While the 
goals can be and should be different for individuals, I 
aimed to achieve a stable and fast enough model to use 
in real-time performance with above-minimal bearable 
preciseness. 
 
 

I. INTRODUCTION 
 

For many musicians, including myself, Artificial 
Intelligence is something unknown technology in a 
black box. Typical musicians’ reactions toward AI 
would often be associated with antagonism, fear, 
doubt, or complete indifference. These negative 
assumptions on AI generally come from the belief that 
“art can only be made by humans.” Whether or not it 
is true, early propaganda on AI was effective and had 
a strong enough impact on people to believe that “AI 
thinks themselves and makes decisions in lieu of 
human,’ which not arguably, has exacerbated the 
feeling of artists as it aesthetically endangers the belief 
of the human autonomy on a piece of art. 

Admittedly even though the propagandized 
statement makes some sense at least in a rhetorical way, 
learning more and more about neural networks 
convinced me that AI does not think themselves, but 
they are TRAINED to reproduce the desired results of 
(a) human. Thus, knowing how a neural network 

works and how it is trained is important, not only for 
engineers but also for the people who have sensitive 
minds wishing to distinguish “who made what.” 
Artists also should not neglect AI’s huge impact on 
contemporary society and the possibility of neural 
networks as well, either if they would like to succeed 
in a market that has been heavily commercialized by 
the power of AI or if they would be willing to 
challenge themselves to work with the developing 
technology for creative purpose. Beatles took full 
advantage of the high-end electronics placed in Abby 
Road Studios back then; Beethoven understood the 
function and character of the modern piano, 
particularly apparent in the low register, and so on and 
so forth. As the modern piano was one of the products 
of the Industrial Revolution and the early 
electroacoustic gear had an inseparable relation to 
radio and military technology for telecommunication, 
the medium of art itself can somewhat reflect the 
culture and influence of contemporary society. This 
leads to the primary motivation of the project: To use 
the AI model as a creative tool and incorporate it as an 
artistic challenge. 

Attempting state-of-the-art technology with an 
innovative theory can legitimately be a clear 
motivation, especially for engineers and 
mathematicians I suppose, but having the creative 
motivation and goals was undoubtedly helpful during 
the working process on the project. Essentially, the 
transcription model is an intermedium between input 
audio and output labels, so knowing “what the outputs 
should look like for the music I want” allowed me to 
have a clear direction and prioritization of the project. 
For example, it was clear to me that the pedal 
prediction of the model should not be a binary 
prediction because the amount of pedaling is very 
important for rich expression in piano music. Also, the 
importance of onsets should apparently be more than 
that of offsets in the model. It is because even though 
the information about offset timing (i.e., duration of a 
note) can be an interesting parameter for 
expressiveness associated with articulation, it would 
be less explicitly represented by those instruments 
with short release such as piano and guitar. In addition, 
I preferred to randomize the velocity and durations of 
notes in the performance using the model, thus the 
precise offset prediction is less prioritized in my 



approach. Above all, shorter processing time and 
stability of the model architecture during run are 
essential for this project to be a reliable tool for real-
time performance. 

Given the conditions and considerations, I 
acknowledge that I followed the streaming piano 
events detection model proposed by Weixing Wei [3], 
with two modifications. First, the pedal prediction is 
made as continuously changing values as already 
mentioned. Second, the receptive field and 
convolutional layers in the encoder are reduced by half 
to mitigate the latency when running the model. In the 
realization stage, I used MaxMSP to process the 
detected events through OSC messages between 
Python and MaxMSP, having MIDI instruments semi-
automatically perform based on the detected pitches 
and additional pitches based on the predictions. Onsets 
of the input audio are observed in MaxMSP and trigger 
output notes with slightly randomized and generalized 
velocity, taken from the loudness of the onsets. 
 
 

II. METHOD 
 
The proposed method uses a CNN encoder and two 
Transformer decoders, one for onset detection and the 
other for offset and pedal detection. Transcription 
takes input audio data and outputs MIDI labels. 
 
2.1 Pre-Processing 
 
Input audio is pre-processed before being fed into the 
CNN in the encoder. The pre-processing takes a few 
steps: resampling the audio into 16,000 Hz, converting 
audio into a single channel, normalizing, and applying 
constant-Q transform (CQT) to obtain a spectrogram. 
For CQT, hop size is set to 320 (20 ms) and minimum 
frequency to 27.5, the lowest note in the piano, and 48 
bins for each octave. CQT provides promising 
spectrum information over FFT as the geometrical 
spacing between each of the bins is equally 
proportional to log-scaled frequency, corresponding to 
the pitch system of music and human auditory 
perception. 
 
2.2 Encoder 
 
The CNN layer is comprised of eight 2-D 
convolutional filters with additional dilated 
convolutional layers. The layering structure is 
borrowed from HPP-net proposed by Wei [4], in which 
the dilated convolutional layers are called Harmonic 
Dilated Convolution (HD-Conv), and the dilation ratio 
is calculated based on the overtone structure of piano 
notes. Wei suggests that the use of HD-Conv in HPP-
net reduces a significant amount of memory 

processing while successfully capturing meaningful 
harmonic information. After the convolutional filters, 
positional encoding is applied. 

In the present project, I started to model the 
encoder to process within a receptive field (M) of 40, 
which I believe is not enough number for the design of 
the convolutional layers but supposedly suffices the 
requirement for the task. However, the training and 
evaluation encountered a problem with time resolution 
later in the experiment, and the latency is critical for 
the aim of the project. Therefore, I reduced the M to 
20 and the number of layers to 6. While this 
modification resulted in a faster conversion in training 
and resolved most of the latency issues, the structure 
of the encoder needs fine-tuning, as the demo running 
of the trained model produced recognizable octave 
misrecognition. 

 
2-3. Decoder 
 
Two Transformer decoders output onsets, offsets, and 
pedal events, in a sequence-by-sequence manner. 
 
2.3.1 Onset Decoder 
 
The onset decoder takes the encoder-decoder attention 
mechanism on the hidden dim = 256 from the encoded 
representation and the previous Onset Tokens Yt. 
Positional encoding is applied to Yt before the cross-
attention. Linear layer (output dim = 90, including 
BOS and EOS tokens in addition to 88 tokens 
representing piano keys) and sigmoid activation are 
applied to obtain the probability of activated keys. 
After thresholding the probability, tokens representing 
the Onset Events y are obtained. The token prediction 
is recursively processed until either 1) a special token 
EOS is obtained or 2) the number of recursions reaches 
a certain number. Currently Activated Onsets A and Yt 
are updated with the obtained tokens. 

Max number of recursions is originally set to 64, 
but it is later reduced to 32 in the experimentation, 
considering that the plausible number of onsets within 
the time frame likely does not exceed 32 in most of the 
cases in piano performance. Also, y inclined to be the 
same in most of the recursions, which makes the early-
stage training stagnate. Removing the duplicating y 
from Yt helped the issue and stabilized the training. 
Learning parameters for the threshold over probability 
dynamically adjust for different pitch ranges in order 
to reconcile the low confidence in the extreme register, 
however, it was not as successful as I assumed.  



2.3.2 Offset Decoder 
 
The offset decoder has a similar structure to the onset 
decoder; The encoded representation of input is 
decoded with the Currently Activated Onsets A and 
pedal prediction from the previous frame, instead of 
Yt. The Offset Tokens Ŷt is predicted all at once in the 
offset decoder, unlike the onset decoder. Combining 
offset and pedal detection intuitively makes sense 
because pedaling of the piano sustains the sound, 
blurring the offsets of notes. 
 
2.3.3 Interdependency between Onset and Offset 
Decoders 
 
Offset Tokens in Ŷt in the previous frame are removed 
from Yt and A. Offset Tokens are predicted from A, 
thus they are interdependent with one another. Even 
though the model takes into account the predictions 
from only one frame back, the interdependency 
enhances the accuracy of the model’s prediction. I 
assume this logic can be suitable for musical 
instruments with short attack and release, such as the 
piano and mallet-percussion instruments. 

Later in the experimentation, I added an additional 
token removal operation based on the pedal value from 
the previous frame, which helped to make the 
sequence of tokens in Yt more concise, improving 
both efficiency and accuracy. 
 
 

III. EXPERIMENT 
 
3.1 Dataset  
 
The dataset used for training is MAESTRO, which 
contains about 200 hours of paired audio and MIDI 

labels, including onsets/offsets temporal information 
for each key and sustain pedal values (values in CC: 
64). The distribution of the dataset is 962, 137, and 177 
for training, evaluation, and testing, respectively. 
 
3.2 Training 
 
Ground truth MIDI labels are prepared to align with 
the time resolution of the model. The time resolution 
is calculated from the hop size set in the CQT (20 ms) 
and receptive field (20): The ground truth labels are 
downsampled into 400 ms frames with max pooling. 
The training utilizes BCEWithLogitsLoss for the 
binary class predictions of onsets and offsets, while 
MSELoss is used for pedal value prediction. Weights 
on the three losses are critical for the convergence. 
Pedal prediction struggles with attaining stability, by 
which offset detection stagnates. However, the pedal 
prediction is not as important as the other two 
predictions, thus I started from a higher weight on the 
pedal in the early stage of training and gradually 
decreased it to provide more room for onset and offset 
losses to improve. 

Also, the early experimentation suffers from 
predicting too many False states and eventually 
predicting no events. In piano music repertoire, False 
states dominate True states, and this is especially 
problematic in the extreme pitch ranges as those 
high/low pitches are often used less frequently 
compared to the middle range. During the 
experimentation, I found that occasionally there are no 
onsets or offsets at all in short segments of the audio 
chunks. While there can be several ways to address 
this data imbalanced issue, I set pos_weight in the loss 
function of the onsets and offsets. It significantly 
mitigated the issue of overconfidence on False states. 
 
3.3 Results 
 
Figure 2 shows the exemplary prediction from the 
model, showing the best result (M = 20, overlap = 0.0). 
Detected pitches are generally in correct places. The 
pedal prediction is loose for the different time 
resolutions between ground truth and the model, but 
hard clamping the values between 0.0 and 0.5 into 0.0 
would help better realization, since the values below 
0.5 globally mean no sustain pedal when converted 
into MIDI values. 

Two post-processing techniques are applied before 
obtaining the final result demonstrated here. First, 
predicted onsets and offsets with low confidence are 
removed from the predictions. Table 1 shows the 
evaluation score of the result, and the recall score is 
dominant over the precision, most likely due to too 
much weighting of the True states after setting 
pos_weight. Even though a higher recall score is 

Figure 1. CNN Encoder and Two Transformer Decoders 



helpful for live performance and processing in the 
realization stage as those “mistakenly” detected 
pitches can contribute to the musical richness 
depending on context, the imbalance between the two 
scores is too much. The first post-processing improves 
the balance between the scores, clearly removing the 
noisy prediction in extreme pitch register and 
redundant repetitive events detection. Second, offsets 
are compensated after the prediction if the detected 
onsets do not have corresponding offsets. The 
compensation is made in either of the following two 
cases: 1) 0.8 or more seconds after the onset is 
activated, pedal-off state is detected: and 2) 2.0 
seconds after the onset is activated, the onset is still 
active. By this compensation approach, the result 
avoids representing notes with unrealistically long 
durations. These two post-processing techniques need 
careful fine-tuning and improvement, and, they have a 
huge impact on the output sound in the realization 
stage as well. To note, it evaluates the onset prediction 
and does not take offset prediction into consideration. 
It is because I have not implemented a way to use the 
offset information in the realization stage, thus the 

evaluation score with offset detection does not provide 
a meaningful context in my usage of the model. 
 
 
IV. REALIZATION 
 
https://youtu.be/pYZuahUBb_8 
(Demonstration video of the realization of the model in 
musical context, December 2024 in Eastman School of 
Music, © Ko Muramatsu 2024. All rights reserved.) 
 
The detected events are sent to MaxMSP through OSC 
messages using a UDP connection, and the software is 
in charge of adding musical context to the predictions 
(e.g., add/remove the pitches from the predictions, 
control velocity, change timbre). Ideally, the change in 
the handling of different settings in MaxMSP and 
transitions from one scene to another should be 
smooth. To note, the output of the notes is triggered by 
onset slices detected in MaxMSP (not from the 
transcription model), thus the timing of the note output 
is not simultaneous with the timing of the events 
detection. This setting allows more organic and 

Figure 2. Comparison betwen ground truth and predicted pitch tables 



 
Model w/o post-processing w/ post-processing 

P (%) R (%) F1 (%) P (%) R (%) F1 (%) 
PPTStreamingModel (proposed) 46.4 88.5 60.5 70.7 79.6 75.5 
Streaming Sq2Seq (state-of-the-art model) N/A N/A N/A 98.30 94.83 96.52 

 

Table 1. Evalua,on Scores 

flexible control over the musical events, meanwhile, 
the time adjustment between the prediction and onset 
slices is an issue to be addressed. 

In the demonstration, I ran the model with a half 
overlap and segment size=18,432 under a sampling 
rate of 48k Hz. The segment size is determined as the 
number that is a multiple of 1024, a kernel size of the 
CQT, and that is equal to or larger than 18,240, the 
number of samples that is required for the receptive 
field fed into the encoder. In this setting, the hop size 
of the prediction is 0.192 seconds, and the model’s 
processing time is approximately 0.015 seconds. Even 
though this is reasonable latency for real-time 
performance in theory, the demonstration showed a 
recognizable amount of delay between the live 
performance and the realization of the detected pitches. 
The delay is likely caused by 1) the timing 
misalignment between events detection and onset 
slices, 2) latency in UDP communication, and/or 3) 
potentially wrong configuration somewhere in my 
current setting. 
 
 

V. CONCLUSION AND FUTURE 
IMPROVEMENTS 

 
The trade-off balance between accuracy and latency of 
this presented work is practical and proved to be useful 
for real-time music performance, even though the 
evaluation score is not high enough to be considered 
as a counterpart to the state-of-the-art result in the 
latest research. Nevertheless, it is apparent that the 
presented model has room for improvement both in 
accuracy and latency. First, the size of the receptive 
field and the encoder structure with dilated 
convolutional layers can be optimized. Second, my 
decoder structures may well contain redundancy and 
there must be a better implementation for both 
computational efficiency and accuracy. Third, fine-
tuning thresholds and weights during the training was 
pretty much a trial-and-error process in my 
experimentation, which is not the best practice for 
concluding the final outcome of the model. The 
accuracy of offset detection is particularly 
unsatisfactory in the current trained model, clearly 
proven by the imbalance between precision and recall 
scores. Lastly, the timing alignment issue between 

model predictions and processing within MaxMSP can 
be reconciled with finer adjustments. 
 Still, the project presents the potential for creative 
music performance, in which the live performer and 
the semi-automated MIDI instruments (considered as 
a virtual performer) build a closely interactive 
relationship. Possible future explorations for the 
expressive music performance would be in 1) use of 
Markov Models and/or HMMs to “predict” upcoming 
pitches based on the notes played by the performer, 2) 
experiment with offsets that provide more content on 
articulations and durations, in addition to velocity, 3) 
timbre variation during the performance, 4) control 
over the delay time between the two performers, 5) use 
the pitch information as parameter for audio effect, 
such as spectral reverb on certain pitch-class notes and 
formants-fixed phase vocoder, and more. 

The use of a neural network model as a creative 
tool opens up the exciting potential for any kind of 
music and artists, and I hope this project will provide 
optimistic insights for future study, both in music and 
engineering domains. 
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