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ABSTRACT

Existing one-class methods for audio deepfake detection
often assume that all bona fide (real) speech is similar,
failing to capture the natural diversity of different speak-
ers. To address this, we propose OTM-TitaNet, a frame-
work that combines a TitaNet backbone with a Speaker-
Agnostic Dual Memory Network. We finetune the TitaNet
encoder to detect spoofing artifacts and use Sinkhorn Op-
timal Transport (OT) to ensure the memory learns diverse
acoustic patterns without supervision. Experiments on the
ASVspoof 2019 LA dataset show our method achieves an
Equal Error Rate (EER) of 1.37%. Surprisingly, our anal-
ysis reveals that this simple architecture outperforms com-
plex models using additional clustering losses (like OC-
Softmax), suggesting that a well-regularized memory net-
work is sufficient for effective detection.

1. INTRODUCTION

Recent advances in Text-to-Speech (TTS) and Voice Con-
version (VC) allow attackers to synthesize high-quality
speech with ease, posing a significant threat to Auto-
matic Speaker Verification (ASV) systems. These Logical
Access (LA) attacks require robust countermeasures that
can generalize to unseen synthesis algorithms. Prior re-
search has actively explored advanced architectures to cap-
ture subtle spoofing artifacts. A prevailing trend involves
adapting large-scale Self-Supervised Learning (SSL) mod-
els, such as Wav2Vec 2.0 or HuBERT, often coupled with
heavy backend classifiers like Graph Neural Networks [1],
Conformers [2], or specialized attention mechanisms [3].
While effective, these Transformer-based approaches of-
ten incur high computational costs and focus primarily on
general speech representations.

In this work, we propose a novel perspective: instead
of general speech encoders, we hypothesize that an en-
coder optimized for speaker verification, like the TitaNet
architecture [4], is uniquely suited for this task. TitaNet’s
1D depth-wise separable convolutions efficiently capture
the spectral-temporal dependencies that define a speaker’s
voice. To our best knowledge, we are the first to investigate
fine-tuning TitaNet as a backbone for anti-spoofing, aim-
ing to expose synthesis artifacts as deviations in the robust
speaker embedding space.

Furthermore, a critical limitation in current loss func-
tion design (e.g., OC-Softmax [5]) is the assumption that
all bona fide speech clusters into a single center. Recent

findings by Kwok et al. [6] highlight a weak spot in cur-
rent systems: the lack of diversity in bona fide testing data
leads to overestimated performance. They argue that real
speech varies significantly (e.g., different environments,
speaking styles), and single-center models fail to capture
this natural variance. While SAMO [7] attempts to solve
this with multi-center learning, it relies on speaker enroll-
ment, which is often unavailable.

To address these gaps, we propose a Speaker-Agnostic
Dual Memory Network. We combine the TitaNet back-
bone with a dual memory bank trained via Sinkhorn Op-
timal Transport. This allows the model to unsupervisedly
learn multiple prototypes for both diverse bona fide speech
(addressing the issue raised in [6]) and varied spoofing pat-
terns, without requiring complex Transformers or speaker
enrollment.

2. RELATED WORK

2.1 Model Architecture

Early anti-spoofing methods primarily relied on hand-
crafted features, such as LFCC and CQCC, combined with
Gaussian Mixture Models (GMMs). The advent of deep
learning shifted the focus towards end-to-end modeling
directly from raw waveforms, with RawNet2 [8] demon-
strating the viability of this approach. More recently,
attention-based mechanisms have dominated the leader-
board. Rosello et al. [2] proposed a Conformer-based
classifier to handle variable-length utterances, leveraging
the global context capabilities of self-attention. Similarly,
Truong et al. [3] introduced a Temporal-Channel Model-
ing module to enhance Multi-Head Self-Attention, target-
ing artifacts in specific time-frequency regions.

Despite their success in detecting unseen attacks, these
transformer-based models often incur significant compu-
tational costs, as they frequently utilize large-scale pre-
trained encoders like Wav2Vec 2.0 (300M parameters)
[9]. To address efficiency concerns in the broader speaker
recognition domain, TitaNet [4] was introduced as a scal-
able architecture utilizing 1D depth-wise separable con-
volutions and Squeeze-and-Excitation layers. With model
sizes ranging from Small (10M) to Large (25M), TitaNet
offers a significantly more lightweight alternative to mas-
sive self-supervised models, though its application has tra-
ditionally focused on verification rather than spoofing de-
tection.



2.2 Loss Function Design

To improve generalization against unseen attacks, One-
Class Learning has become a standard paradigm. The OC-
Softmax loss [5] operates by compacting bona fide em-
beddings into a single center while pushing spoofed sam-
ples away. However, this approach relies on the strong as-
sumption that bona fide speech is homogeneous. Kwok
et al. [6] recently challenged this premise, demonstrating
that single-center models struggle when bona fide speech
deviates from standard "clean read" distributions (e.g., in
cross-dataset testing), thereby highlighting the necessity
for modeling the diversity within real speech.

To address the issue of intra-class diversity, SAMO
[7] introduced a Speaker Attractor Multi-Center One-
Class learning framework. By clustering bona fide speech
around multiple centers based on speaker identity, SAMO
achieves finer-grained decision boundaries. However, a
major limitation of this approach is its dependency on
speaker enrollment data to define these centers, which re-
stricts its applicability in scenarios where speaker identity
is unknown or enrollment data is unavailable.

3. METHODOLOGY

Our framework consists of three integrated components:
(1) a fine-tuned TitaNet encoder for speaker-discriminative
feature extraction, (2) a Speaker-Agnostic Dual Memory
Network inspired by non-parametric instance discrimina-
tion [10], and (3) an Optimal Transport regularization
mechanism adapting the Sinkhorn-Knopp algorithm from
SwAV [11] to ensure prototype diversity.

3.1 TitaNet Encoder

We adopt the pre-trained TitaNet checkpoints [4] as our
backbone fθ. TitaNet utilizes 1D depth-wise separable
convolutions with global context attention to efficiently en-
code variable-length audio into a fixed-dimensional em-
bedding. Given a raw waveform X , the encoder produces
a normalized embedding:

z = fθ(X) ∈ RD, ||z||2 = 1 (1)

where D = 192. Unlike standard approaches that freeze
pre-trained weights, we fine-tune the entire encoder. This
allows the model to shift from a purely speaker-verification
space (where spoofing artifacts might be ignored as chan-
nel noise) to an anti-spoofing space.

3.2 Dual Memory Banks with Sparse Attention

To capture the multi-modal nature of speech without su-
pervision, we employ external memory modules. Inspired
by the memory bank structure proposed by Wu et al. [10]
for unsupervised feature learning, we maintain a storage of
representations that is decoupled from the mini-batch size.
However, distinct from [10] which stores an embedding
for every training instance (instance-level), we adapt this
to store learnable prototypes (cluster-level) that represent
canonical acoustic patterns.

We define two distinct memory banks:

Mreal = {mr,1, ...,mr,K} ∈ RK×D (2)

Mspoof = {ms,1, ...,ms,K} ∈ RK×D (3)

where K is the number of prototypes (slots). Mreal aims
to cover the diverse acoustic environments and speaking
styles of bona fide speech, while Mspoof captures varied
attack artifacts.

For an input embedding z, we compute the cosine simi-
larity with all prototypes. To filter out irrelevant prototypes
and focus on the most similar acoustic modes, we apply a
Sparse Attention mechanism that considers only the Top-k
entries:

ẑreal =
∑

j∈TopK(z,Mreal)

exp(z ·mr,j/τ)∑
l exp(z ·mr,l/τ)

mr,j (4)

The reconstruction error Ereal = ||z − ẑreal||2 serves as
mean square error relative to the bona fide distribution.

3.3 Optimal Transport

A critical challenge in learning discrete prototypes is mode
collapse, where the encoder maps all inputs to a small sub-
set of prototypes, leaving the majority of the memory bank
unused. This creates a trivial solution where the memory
degenerates into a single mean vector.

To resolve this, we adopt the Equipartition Constraint
strategy from SwAV [11]. Caron et al. demonstrated that
enforcing an equal distribution of data samples across pro-
totypes during training effectively prevents collapse.

We formulate the memory addressing as an Optimal
Transport (OT) problem. Let Z = [z1, ..., zB ] be the batch
of embeddings and C be the matrix of prototypes (from
either bank). We seek an assignment matrix Q ∈ RB×K

that maximizes the similarity between features and proto-
types, subject to the constraint that Q is a transport plan
distributing samples uniformly. Formally, we optimize Q
to maximize Tr(QTCTZ) + εH(Q), where H is the en-
tropy regularization. As proposed in SwAV, the solution is
obtained efficiently using the Sinkhorn-Knopp algorithm:

Q∗ = Diag(u) exp(
CTZ

ε
)Diag(v) (5)

where u and v are renormalization vectors computed itera-
tively.

We then impose an OT Loss that forces the model’s pre-
dicted softmax probabilities P to match this optimal as-
signment Q:

Lot = − 1

B

B∑
i=1

K∑
j=1

Q∗
ij logPij (6)

By integrating this loss, we ensure that both Mreal and
Mspoof maintain diverse, active prototypes, enabling the
system to generalize across different speakers and attacks
without explicit labels.



3.4 Objective Functions

The final training objective combines reconstruction, opti-
mal transport regularization, and an explicit diversity con-
straint:

Ltotal = Lrecon + λotLot + λdivLdiv (7)

3.4.1 Dual Reconstruction Loss (Lrecon)

We minimize the reconstruction error for the correct mem-
ory bank (Attract) and maximize it for the incorrect one
(Repel) using a margin-based hinge loss:

Lrecon =
1

|B|
∑
x∈B

[Ereal(x) + max(0,m− Espoof (x))]

+
1

|S|
∑
x∈S

[Espoof (x) + max(0,m− Ereal(x))]

(8)

where B and S denote bona fide and spoof samples, and m
is the margin.

3.4.2 Diversity Loss (Ldiv)

To further ensure that the memory slots are utilized uni-
formly and to prevent the "dying slot" problem, we maxi-
mize the entropy of the averaged attention distribution. Al-
though Sinkhorn OT handles batch-wise distribution, Ldiv

acts as a global constraint:

Ldiv = −H(w̄) =

K∑
j=1

w̄j log(w̄j + ϵ) (9)

where w̄ = 1
B

∑B
i=1 wi is the mean attention weight

across the batch. Minimizing negative entropy Ldiv en-
courages a uniform distribution over all K slots.

4. EXPERIMENTAL SETUP

4.1 Dataset and Protocols

We used the official train, dev, and test splits from
ASVspoof2019 [12]. The training process was monitored
using the development set. specifically, we selected the
model checkpoint that achieved the lowest Equal Error
Rate (EER) on the validation set for evaluation.

To evaluate robustness against domain shift and unseen
attacks, we tested on the ASVspoof2021 LA test set [13].
Following standard practices for fair comparison, we uti-
lized a fixed 4-second cropped version of the dataset.

4.2 Evaluation Metrics

We report performance using two standard metrics estab-
lished by the ASVspoof challenges:

Equal Error Rate (EER): The EER represents the op-
erating point where the False Acceptance Rate (FAR) and
False Rejection Rate (FRR) are equal. FAR is the propor-
tion of spoofing attacks incorrectly accepted as bona fide,

while FRR is the proportion of bona fide speech incorrectly
rejected.

EER = FAR(θeer) = FRR(θeer) (10)

where θeer is the decision threshold.
Minimum Tandem Detection Cost Function (min t-

DCF): While EER assesses the standalone performance
of the countermeasure (CM), the t-DCF [?] evaluates the
impact of the CM on a fixed Automatic Speaker Verifica-
tion (ASV) system. It considers the costs of different er-
ror types (Cmiss, Cfa) and the prior probability of attacks
(πspoof ).

t-DCF(θ) = CmissPmiss(θ)πtarget

+ CfaPfa(θ)(1− πtarget)
(11)

A lower min t-DCF indicates that the CM is more effective
in a practical tandem integration scenario.

4.3 Data Augmentation

To improve robustness against channel variations, we ap-
plied RawBoost [14] during training. Due to implementa-
tion constraints, we utilized Algorithm 2 (Impulsive Signal
Dependent Noise) and Algorithm 3 (Stationary Signal In-
dependent Noise), excluding Algorithm 1. This subset of
augmentations effectively simulates additive background
noise and transmission artifacts.

5. RESULTS

5.1 Overall Result

Table 2 and Table 3 compare our method with existing
SOTA systems.On ASVspoof 2019 LA(Table 2), our base-
line (1.37%) significantly outperforms the RawNet2 base-
line (2.48%) and is competitive with OC-Softmax (1.25%).
While SAMO (1.08%) performs slightly better, it requires
speaker enrollment. Our method achieves comparable re-
sults in a strictly speaker-agnostic setting.

On ASVspoof 2021 LA(Table 3), which features se-
vere channel variability, our TitaNet-Large model achieves
an EER of 9.90%. This performance is comparable
to RawNet2 (9.50%) but lags behind AASIST (5.59%)
and large-scale pre-trained models like XLSR-Conformer
(1.38%). This indicates that while our method is effective
for detecting logical artifacts, the domain gap in telephony
conditions remains a challenge for the finetuned TitaNet
encoder compared to massive SSL models.

5.2 Score Distribution Analysis

Table 4 shows the statistics of the output scores. The
Baseline system provides the clearest separation between
Bonafide (Mean 1.16) and Spoof (Mean -1.00) distribu-
tions with relatively low standard deviation. In contrast,
the experiment with encoder only (without memory bank)
results in a much smaller margin (0.98 vs -0.14), confirm-
ing that the Memory Bank significantly enhances the dis-
criminative power.



Table 1. Experimental Results on ASVspoof 2019 and 2021 LA.

Method 2019 EER (%) 2019 min t-DCF 2021 EER (%)

Baseline (Recon + OT) 1.37 0.0412 11.03
+ OC-Softmax 1.52 0.0438 18.39
+ Multi-Center OC 3.47 0.0714 11.92
+ Contrastive Loss 2.87 0.0510 12.76
+ Large Model 5.26 0.1150 9.90
+ Adaptive Margin 3.22 0.0635 10.19
+ Score Fusion 2.47 0.0626 11.02

Larger Memory (128 slots) 1.90 0.0584 10.25
TitaNet + OC (No Memory) 1.70 0.0548 10.50
- OT 5.80 0.0673 11.34

Table 2. Comparison with SOTA on ASVspoof 2019 LA
(Eval)
Method Backbone EER (%) min t-DCF

RawNet2 [15] RawNet2 2.48 -
OC-Softmax [5] AASIST 1.25 0.0415
SAMO [7] AASIST 1.08 0.0363
Ours TitaNet Small 1.37 0.0412

Table 3. Comparison on ASVspoof 2021 LA (Fixed 4s
crop)

Method 2021 EER (%)

RawNet2 [15] 9.50
AASIST [1] 5.59
XLSR-Conformer [16] 1.38
XLSR-Conformer + TCM [3] 1.03

Ours (TitaNet Large) 9.90
Ours (TitaNet Small) 11.03

5.3 ASVspoof 2019 LA Performance

Table 1 summarizes the performance of our proposed
methods. The Baseline configuration (TitaNet-Small +
Dual Memory + OT) achieved the best performance with
an EER of 1.37% and min t-DCF of 0.0412.

Surprisingly, increasing complexity (Enhanced Mode)
did not yield improvements. Adding OC-Softmax (1.52%)
and Multi-Center losses (3.47%) degraded performance.
This suggests that the unsupervised dual memory mecha-
nism is sufficient for capturing discriminative features, and
additional supervised clustering losses may introduce op-
timization conflicts.

6. DISCUSSION

6.1 The Necessity of Optimal Transport

A critical question in memory-based networks is whether
complex regularization like Optimal Transport is truly nec-
essary, or if a simple reconstruction loss would suffice. To
address this, we conduct an experiment that we removed

Table 4. Score Distribution Analysis (ASVspoof 2019
LA)

Method Bonafide Spoof

Mean Std Mean Std

Baseline 1.16 0.20 -1.00 0.31
+ OC-Softmax 1.34 0.33 -1.60 0.39
+ Contrastive 1.31 0.22 -1.66 0.61
+ Large Model 1.10 0.27 -1.23 0.76
TitaNet Only 0.98 0.11 -0.14 0.20

the OT regularization and the Diversity Loss, relying solely
on reconstruction error.

The results were decisive: removing OT caused the
EER to degrade drastically from 1.37% to 5.80%. We ob-
served that without the normalization imposed by OT, the
model suffered from severe mode collapse, utilizing only a
small fraction of the available memory slots. This confirms
that OT is not merely an auxiliary component but a funda-
mental requirement for learning a diverse and effective set
of acoustic prototypes in an unsupervised manner.

6.2 Incompatibility of Supervised Clustering Losses

We initially hypothesized that explicitly enforcing global
compactness via One-Class (OC) loss functions would
complement the local manifold learning of the Memory
Network. We tested two variants:

1. Single-Center OC-Softmax: Compacting all bona
fide embeddings to a single point.

2. Multi-Center OC-Softmax: Learning K = 20 cen-
ters to capture speaker diversity.

The objective function was modified as:

Loc =
1

N

∑
i

log(1 + eα(mreal−cos(zi,c))) (12)

Ltotal = Lrecon+λoc ·Loc+λot ·Lot+λdiv ·Ldiv (13)

As shown in Table 1, both variants degraded perfor-
mance compared to the Baseline (EER 1.37%). Specif-
ically, Multi-Center OC-Softmax performed significantly



Figure 1. Validation EER curves during training. The os-
cillation indicates the sensitivity of the decision boundary
to the embedding geometry.

worse (EER 3.47%). We suspect this performance degra-
dation stems from a conflict in optimization objectives.
While the reconstruction loss requires the embeddings to
retain enough variance to distinguish prototypes, the OC-
Softmax loss forces them to collapse into a single point.
This contradiction likely prevents the encoder from learn-
ing a stable feature space.

Furthermore, in the Multi-Center OC-Softmax setting,
without the explicit read-write mechanism of a memory
bank or speaker labels (as in SAMO [7]), the learnable
centers ck struggled to converge to meaningful clusters,
likely trapping the encoder in a suboptimal local minimum.
This confirms that for unsupervised modeling of bona fide
diversity, the baseline is a superior mechanism to simple
learnable centers.

6.3 Training Dynamics and Stability

Deep metric learning on small datasets often suffers from
training instability. We analyzed the evolution of the Vali-
dation EER throughout the training process (Figure 1).

We observed significant fluctuations in the Validation
EER, even when the training loss decreased smoothly. For
instance, in the Baseline experiment, the EER fluctuated
between 1.37% (best) and 1.59% (last epoch). This volatil-
ity underscores the disconnect between the training loss
and the threshold-dependent EER metric.

6.4 Generalization to the ASVspoof2021

While the Baseline (Small model) was best for 2019,
the experiment with TitaNet-Large model as encoder
achieved the best performance on the 2021 dataset (9.90%
vs 11.03%). This suggests that the larger model ca-
pacity helps in generalizing to unknown channel con-
ditions, even if it slightly overfits the source domain
(ASVspoof2019). However, compared to SOTA models
like XLSR-Conformer + TCM [3] (1.03%), our method
still struggles with the extreme domain shift in ASVspoof
2021, highlighting the advantage of large-scale SSL pre-
training speech encoders for in-the-wild scenarios.

6.5 Ineffectiveness of Adaptive Margins

While the reconstruction loss Lrecon requires fixed margin
as hyperparameter, it might be too difficult for the model to
satisfy early in training. Inspired by curriculum learning,
we implemented an Adaptive Margin Scheduler to progres-
sively tighten the decision boundary. The margins for bona
fide (mreal) and spoof (mfake) were formulated as time-
dependent functions:

mreal(t) = 0.7 + ρ(t) · (0.95− 0.7) (14)

mfake(t) = 0.3− ρ(t) · (0.3− 0.1) (15)

where ρ(t) linearly increases from 0 to 1 after a warmup
period.

Contrary to expectations, this strategy degraded the
EER from 1.37% (Baseline) to 3.22%. We analyze that
the dynamic shifting of decision boundaries prevents the
memory prototypes from stabilizing. Since the Sinkhorn
algorithm relies on stable feature distributions to compute
optimal assignments, the constantly moving margins dis-
rupted the convergence of the unsupervised clustering pro-
cess.

6.6 Redundancy in Score Fusion

We explored whether combining the local reconstruction
score (Smem) with a global classification score (Soc) could
leverage complementary information. To investigate, we
implemented a score fusion mechanism using Z-score nor-
malization:

Sfinal = w · Soc − µoc

σoc
+(1−w) · Smem − µmem

σmem
(16)

where Smem = Ereal − Espoof and Soc is the output of
the OC-Softmax layer.

Although Score Fusion (EER 2.47%) improved upon
the OC-Softmax experiments, it failed to surpass the pure
reconstruction Baseline (EER 1.37%). This indicates that
the discriminative information captured by the global OC-
Softmax loss is largely redundant to the fine-grained fea-
tures captured by the Dual Memory banks. Furthermore,
the gradient conflict between minimizing reconstruction
error (preserving variance) and minimizing OC loss (col-
lapsing variance) during training likely weakened the qual-
ity of the TitaNet embeddings, rendering the fusion less
effective than the single-stream memory approach.

7. CONCLUSION

In this paper, we proposed OTM-TitaNet, a lightweight and
effective framework for audio deepfake detection. By com-
bining a fine-tuned TitaNet encoder with a Dual Memory
Network, we can detect attacks without requiring speaker
enrollment.

Our experiments highlighted two key findings. First,
Optimal Transport is essential. Without it, the memory
network suffers from mode collapse and fails to learn use-
ful features. Second, simpler is better. We found that
adding complex supervised losses, such as OC-Softmax,



actually degraded performance compared to our baseline
(EER 1.37%). This indicates that simple memory recon-
struction is robust enough for this task. While our method
works well on the ASVspoof 2019 dataset, future work
will focus on improving generalization to the unseen chan-
nel conditions in the ASVspoof 2021 dataset.
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Algorithm 1 Memory Bank Initialization
Input: Number of slots K, Embedding dimension D
Output: Bonafide bank Mreal, Spoof bank Mspoof

1: Mreal ∼ N (0, 1)K×D

2: Mspoof ∼ N (0, 1)K×D

3: Mreal ← RowL2Normalize(Mreal)
4: Mspoof ← RowL2Normalize(Mspoof )
5: return Mreal,Mspoof

Algorithm 2 Top-K Sparse Reconstruction
Input: Embedding z ∈ RB×D , Memory Bank M ∈ RK×D , Top-k parameter k
Output: Reconstructed ẑ, Error E, Similarity S

1: M̂← RowL2Normalize(M)

2: S← z · M̂⊤ ▷ Cosine Similarity
3: Vtop, Itop ← TopK(S, k) ▷ Select top-k slots
4: W← Softmax(Vtop) ▷ Compute weights
5: Msel ← Gather(M̂, Itop)

6: ẑ←
∑k

j=1 W:,j ·Msel,:,j ▷ Weighted Sum
7: E ← ∥z− ẑ∥22 ▷ MSE Calculation
8: return ẑ, E,S

Algorithm 3 Sinkhorn-Knopp Algorithm (OT Regularization)
Input: Logits L ∈ RB×K , Smooth ϵ, Iterations T
Output: Optimal Assignment Matrix Q

1: Q← exp(L/ϵ)
2: for t = 1 to T do
3: Q← Q⊘ (Q · 1K · 1⊤

K) ▷ Row Norm
4: Q← Q⊘ (1B · 1⊤

B ·Q) ▷ Col Norm
5: end for
6: Q← Q⊘ (Q · 1K · 1⊤

K) ▷ Final Row Norm
7: return Q

Algorithm 4 Dual Reconstruction Loss
Input: Errors Ereal, Espoof , Labels y, Margin m

1: B ← {i | yi = 0} ▷ Bonafide indices
2: S ← {i | yi = 1} ▷ Spoof indices
3: L ← 0
4: if |B| > 0 then
5: L ← L+ Mean(Ereal[B])
6: L ← L+ Mean(ReLU(m− Espoof [B]))
7: end if
8: if |S| > 0 then
9: L ← L+ Mean(Espoof [S])

10: L ← L+ Mean(ReLU(m− Ereal[S]))
11: end if
12: return L

Algorithm 5 OT Loss Computation
Input: Logits L, Target Assignment Q (from Sinkhorn)
Output: Loss scalar Lot

1: P← LogSoftmax(L)
2: Qtarget ← Detach(Q) ▷ Stop gradient for target
3: Lot ← − 1

B

∑B
i=1

∑K
j=1 Qtarget,i,j ·Pi,j

4: return Lot

Algorithm 6 Diversity Loss (Entropy Maximization)
Input: Attention Weights W ∈ RB×K

Output: Loss scalar Ldiv

1: w̄← 1
B

∑B
i=1 Wi,:

2: H ← −
∑K

j=1 w̄j · log(w̄j + ϵ)
3: Ldiv ← −H ▷ Maximize entropy
4: return Ldiv



Algorithm 7 Multi-Center OC-Softmax Loss (Exp 1 & 2)
Input: Embeddings z, Centers C, Labels y, Margins mreal,mfake, Scale α

1: S← L2Normalize(z) · L2Normalize(C)⊤

2: smax ← maxj(S:,j) ▷ Max similarity
3: L ← 0
4: for each sample i in batch do
5: if yi = 0 then ▷ Bonafide
6: L ← L+ Softplus(α(mreal − smax,i))
7: else ▷ Spoof
8: L ← L+ Softplus(α(smax,i −mfake))
9: end if

10: end for
11: return Mean(L)

Algorithm 8 Contrastive Memory Loss (Exp 3)
Input: Embedding z, Memory M, Labels y, Temp τ , Margin m

1: S← (z ·M⊤)/τ
2: Lpull ← 0,Lpush ← 0
3: if Bonafide samples exist then
4: Lpull ← −Mean(LogSumExp(S[Bonafide]))
5: end if
6: if Spoof samples exist then
7: Lpush ← Mean(ReLU(max(S[Spoof]) +m))
8: end if
9: return Lpull + Lpush

Algorithm 9 Adaptive Margin Scheduler (Exp 5)
Input: Current Step t, Warmup Twarm, Total Steps Ttotal

Output: Current margins mreal,mfake

1: Hyperparams: mstart
real = 0.7,mend

real = 0.95
2: Hyperparams: mstart

fake = 0.3,mend
fake = 0.1

3: if t < Twarm then
4: p← 0
5: else
6: p← t−Twarm

Ttotal−Twarm

7: p← min(p, 1.0)
8: end if
9: mreal ← mstart

real + p · (mend
real −mstart

real )
10: mfake ← mstart

fake − p · (mstart
fake −mend

fake)
11: return mreal,mfake



Table 5. Main Training Configuration (Baseline)
Category Parameter Value

Dataset

Dataset ASVspoof 2019 LA
Train split Official train (A01–A06 attacks)
Dev split Official dev (A01–A06 attacks)
Eval split Official eval (A07–A19 attacks, unseen)

Audio Processing
Sample rate 16 kHz
Max length 64,600 samples (≈ 4 seconds)
Normalization Per-utterance mean-variance

Model Architecture

Backbone TitaNet-Small (10M parameters)
Embedding dimension 192 (L2-normalized)
Freeze encoder False
Memory slots (per bank) 64 (Bonafide and Spoof banks)
Top-K attention 10

Training

Optimizer AdamW
Weight decay 2× 10−3

Initial learning rate 1× 10−4

Learning rate schedule Warm-up + Cosine annealing
Warm-up steps 500
Max training steps 5,000
Batch size 64
Gradient clipping 5.0

Loss Weights

λrecon 1.0
λot 0.2
λoc 0.0
λdiv 0.1
λcontrastive 0.0

Sinkhorn OT Iterations 3
Epsilon (ϵ) 0.05

Data Augmentation RawBoost Enabled (Algorithms: ISD, SSI)

Hardware
Accelerator GPU
Devices 2 RTX4090
Precision FP32

Table 6. Enhanced Mode Configuration
Category Parameter Value

Mode Configuration Enhanced

OC-Softmax

Centers 20
mreal 0.9
mfake 0.3
α 20.0

Loss Weights (Enhanced)

λrecon 1.0
λot 0.2
λoc 0.5
λdiv 0.1
λcontrastive 0.3

Score Fusion
Fusion strategy Reconstruction + OC-Softmax (weighted combination)
Fusion weight (w) 0.5 (OC score weight)
Normalization Z-score (per-score normalization)

Adaptive Margin
Use adaptive margin False/True
Warmup steps 500
Total steps 5,000



Table 7. Experiment Configurations Comparison (Baseline to Exp 9)
Configuration Baseline Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9

Model
TitaNet Small Small Small Small Large Large Large Small Small Small
Memory slots 64 64 64 64 128 128 128 128 0 64
Top-K 10 10 10 10 10 10 10 20 0 10

Loss Functions
Reconstruction ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓
OT regularization ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ×
OC-Softmax × ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ×
Contrastive × × × ✓ ✓ ✓ ✓ × × ×

Loss Weights
λrecon 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0
λot 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.0
λoc 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.5 0.0
λcontrastive 0.0 0.0 0.0 0.3 0.3 0.3 0.3 0.0 0.0 0.0

OC-Softmax
Centers – 1 20 20 20 20 20 – 1 –
mreal – 0.9 0.9 0.9 0.9 0.9 0.9 – 0.9 –
mfake – 0.3 0.3 0.3 0.3 0.3 0.3 – 0.3 –
Adaptive margin – × × × × ✓ ✓ – × –

Mode & Scoring
Mode Basic Basic Enhanced Enhanced Enhanced Enhanced Enhanced Basic Basic Basic
Score fusion Recon Recon Recon Recon Recon Recon Combined Recon OC Recon
Score weight – – – – – – 0.7 – – –
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